Machine learning in intrusion detection : topics from scientific literature
Authors
Date
2020Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Koneoppimisen ominaisuudet ovat tehneet monista sen menetelmistä käytettyjä hyökkäysten havaitsemisessa. Nykyinen kirjallisuus, joka käsittelee koneoppimista hyökkäysten havaitsemissa, on vailla hyvää yleiskatsausta koko aihealueen kirjallisuuteen. Olemassa olevan datamäärän vuoksi perinteisten metodien käyttö data analyysissä olisi työlästä ja tehotonta. Tämä tutkimus lähestyy haastetta käyttämällä automaattista tekstianalyysimenetelmää nimeltä dynaaminen aihemallinnus. Dynaaminen aihemallinnus kykenee tunnistamaan aiheiden kehittymisen ajan myötä, mikä tekee siitä hyvän mallinnusvaihtoehdon käytettäväksi dokumentteihin, jotka kuvaava kehittyvää sisältöä. Dynaamisella aihemallinnuksella löydettiin 21 aihetta, joista 15 oli tulkittavia. Tulkittavat aiheet nimettiin, tosin nimeämisessä heijastuu vain yhden henkilön mielipide. Tämän tutkimuksen tärkeimmät tuotokset ovat nykyisen kirjallisuuden kartoitus. Käytetyt koneoppimisen metodit ovat hyvin tutkittu alue, joka tekee niiden kontekstien, joissa näitä menetelmiä käytetään tunnistamisesta mielenkiintoisemman osan löydöksistä. Useita puutteita tunnistettiin datan keräyksessä, datan prosessoinnissa, mallin evaluoinnissa ja aiheiden tulkinnassa. Tämän vuoksi tulosten validiteetti pitää joissain määrin kyseenalaistaa. Valitun tekstianalyysimenetelmän ominaisuuksien vuoksi tuloksista puuttuu rikkaus, joka yleensä liitetään perinteisiin tutkimusmenetelmiin. Tämän vuoksi lisätutkimuksien aiheiksi ehdotetaan aiheita, jotka pyrkivät korjaamaan tämän puutoksen. Tälle aihealueelle löydettyjen aiheiden tulevaisuuden kehittyminen ja uusien aiheiden ilmaantumisen tunnistaminen olisivat myös hyödyllisiä.
...
Due to the traits of machine learning, many of its techniques are used in intrusion detection. Current literature of machine learning in intrusion detection lacks a good overview of the current research landscape. Due to the amount of existing data, using traditional methods to make sense of the literature would be laborious and ineffective. This study approaches the problem through using automated text analysis method called dynamic topic modelling. Dynamic topic modelling has the ability to capture the evolution of topics, which makes it a good modelling option to use on a document collection reflecting evolving content. Using the model, 21 topics were acquired, where 15 of them were deemed interpretable. Interpretable topics were labelled, though the labelling only reflects the opinion of one person. The main contribution of this study is the mapping of current research landscape. Used machine learning techniques is a well-studied area, which makes the identification of different contexts where machine learning techniques are applied in the more interesting part of the findings. Several limitations can be identified in data collection, data pre-processing, model evaluation and topic interpretation. This means that the validity of the results needs to be questioned to a degree. Due to the nature of the selected text analysis method, the results lack the richness often affiliated with traditional research methods. Due to this, suggestions of further research present topics which aim to combat this short falling. For this area of research, understanding of future evolution of topics and the identification of emerging topics would also be valuable.
...
Keywords
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [29657]
Related items
Showing items with similar title or keywords.
-
Unsupervised network intrusion detection systems for zero-day fast-spreading network attacks and botnets
Vahdani Amoli, Payam (University of Jyväskylä, 2015)Today, the occurrence of zero-day and complex attacks in high-speed networks is increasingly common due to the high number vulnerabilities in the cyber world. As a result, intrusions become more sophisticated and fast ... -
On Attacking Future 5G Networks with Adversarial Examples : Survey
Zolotukhin, Mikhail; Zhang, Di; Hämäläinen, Timo; Miraghaei, Parsa (MDPI AG, 2023)The introduction of 5G technology along with the exponential growth in connected devices is expected to cause a challenge for the efficient and reliable network resource allocation. Network providers are now required to ... -
Adversarial Attack’s Impact on Machine Learning Model in Cyber-Physical Systems
Vähäkainu, Petri; Lehto, Martti; Kariluoto, Antti (Peregrine Technical Solutions, 2020)Deficiency of correctly implemented and robust defence leaves Internet of Things devices vulnerable to cyber threats, such as adversarial attacks. A perpetrator can utilize adversarial examples when attacking Machine ... -
Countering Adversarial Inference Evasion Attacks Towards ML-Based Smart Lock in Cyber-Physical System Context
Vähäkainu, Petri; Lehto, Martti; Kariluoto, Antti (Springer, 2021)Machine Learning (ML) has been taking significant evolutionary steps and provided sophisticated means in developing novel and smart, up-to-date applications. However, the development has also brought new types of hazards ... -
Reinforcement Learning for Attack Mitigation in SDN-enabled Networks
Zolotukhin, Mikhail; Kumar, Sanjay; Hämäläinen, Timo (IEEE, 2020)With the recent progress in the development of low-budget sensors and machine-to-machine communication, the Internet-of-Things has attracted considerable attention. Unfortunately, many of today's smart devices are rushed ...