Näytä suppeat kuvailutiedot

dc.contributor.authorLaanto, Elina
dc.contributor.authorMäkelä, Kati
dc.contributor.authorHoikkala, Ville
dc.contributor.authorRavantti, Janne J.
dc.contributor.authorSundberg, Lotta-Riina
dc.date.accessioned2020-06-05T04:42:25Z
dc.date.available2020-06-05T04:42:25Z
dc.date.issued2020
dc.identifier.citationLaanto, E., Mäkelä, K., Hoikkala, V., Ravantti, J. J., & Sundberg, L.-R. (2020). Adapting a Phage to Combat Phage Resistance. <i>Antibiotics</i>, <i>9</i>(6), Article 291. <a href="https://doi.org/10.3390/antibiotics9060291" target="_blank">https://doi.org/10.3390/antibiotics9060291</a>
dc.identifier.otherCONVID_35839057
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/69724
dc.description.abstractPhage therapy is becoming a widely recognized alternative for fighting pathogenic bacteria due to increasing antibiotic resistance problems. However, one of the common concerns related to the use of phages is the evolution of bacterial resistance against the phages, putatively disabling the treatment. Experimental adaptation of the phage (phage training) to infect a resistant host has been used to combat this problem. Yet, there is very little information on the trade-offs of phage infectivity and host range. Here we co-cultured a myophage FCV-1 with its host, the fish pathogen Flavobacterium columnare, in lake water and monitored the interaction for a one-month period. Phage resistance was detected within one day of co-culture in the majority of the bacterial isolates (16 out of the 18 co-evolved clones). The primary phage resistance mechanism suggests defense via surface modifications, as the phage numbers rose in the first two days of the experiment and remained stable thereafter. However, one bacterial isolate had acquired a spacer in its CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)-Cas locus, indicating that also CRISPR-Cas defense was employed in the phage-host interactions. After a week of co-culture, a phage isolate was obtained that was able to infect 18 out of the 32 otherwise resistant clones isolated during the experiment. Phage genome sequencing revealed several mutations in two open reading frames (ORFs) likely to be involved in the regained infectivity of the evolved phage. Their location in the genome suggests that they encode tail genes. Characterization of this evolved phage, however, showed a direct cost for the ability to infect several otherwise resistant clones—adsorption was significantly lower than in the ancestral phage. This work describes a method for adapting the phage to overcome phage resistance in a fish pathogenic system.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofseriesAntibiotics
dc.rightsCC BY 4.0
dc.subject.othercoevolution
dc.subject.otherfish pathogen
dc.subject.otherphage resistance
dc.subject.otherphage therapy
dc.titleAdapting a Phage to Combat Phage Resistance
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202006053981
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineBiologisten vuorovaikutusten huippututkimusyksikköfi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineCell and Molecular Biologyen
dc.contributor.oppiaineCentre of Excellence in Biological Interactions Researchen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2079-6382
dc.relation.numberinseries6
dc.relation.volume9
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 by the authors. Licensee MDPI, Basel, Switzerland
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber314939
dc.subject.ysofagiterapia
dc.subject.ysobakteriofagit
dc.subject.ysolääkeresistenssi
dc.subject.ysokalataudit
dc.subject.ysoevoluutio
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p29496
jyx.subject.urihttp://www.yso.fi/onto/yso/p25303
jyx.subject.urihttp://www.yso.fi/onto/yso/p25181
jyx.subject.urihttp://www.yso.fi/onto/yso/p46
jyx.subject.urihttp://www.yso.fi/onto/yso/p8278
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/antibiotics9060291
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationhis research was funded by the Academy of Finland grants #321985 (EL) and #314939 (LRS) and Jane and Aatos Erkko Foundation. This work resulted from the BONUS Flavophage project supported by BONUS (Art 185), funded jointly by the European Union (EU) and the Academy of Finland.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0