dc.contributor.advisor | Rajala, Tapio | |
dc.contributor.author | Rauhansalo, Akseli | |
dc.date.accessioned | 2020-06-01T12:22:33Z | |
dc.date.available | 2020-06-01T12:22:33Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/69349 | |
dc.description.abstract | Tässä tutkielmassa perehdytään massansiirtoteorian perusteisiin, erityisesti niin kutsuttujen liikennesuunnitelmien kautta. Tutkielman päätuloksena osoitetaan, että liikennesuunnitelman energialle on olemassa optimaalinen liikennesuunnitelma, joka minimoi energian.
Käsiteltävässä massansiirto-ongelmassa tavoitteena on siirtää massaa yhdeltä mitalta toiselle mahdollisimman pienellä kokonaiskustannuksella. Mahdolliset kuljetusreitit määritellään Lipschitz-jatkuvina polkuina. Lipschitz-polkujen muodostama metrinen avaruus osoitetaan kompaktiksi sopivalla etäisyyden valinnalla. Metristä avaruutta kutsutaan kompaktiksi, jos sen jokaisella peitteellä on olemassa äärellinen osapeite.
Mahdollisista kuljetusreiteistä rakennetaan niin kutsuttu liikennesuunnitelma, joka painottaa polkujen avaruutta siten, että painotetut polut kuljettavat massaa suhteessa annettuun painoon. Liikennesuunnitelma on tällöin luonnollista määritellä mittana Lipschitz-polkujen avaruuteen. Liikennesuunnitelmalta vaaditaan, että äärettömän pitkät polut saavat painokseen nollan, toisin sanoen äärettömän pitkien polkujen osajoukko on nollamittainen liikennesuunnitelman suhteen.
Liikennesuunnitelmalle määritellään energia, joka on yhdenmukainen diskreettien massansiirto-ongelmien kanssa. Energia tulee riippumaan käytettyjen liikennesuunnitelman painottamien polkujen pituuksista ja kertaluvuista. Kertaluku kuvastaa sitä, kuinka usea polku käy samassa pisteessä. Energian minimoimiseksi pituus ja kertaluku halutaan luonnollisesti minimoida optimaalisen liikennesuunnitelman löytämisellä.
Optimaalisen liikennesuunnitelman olemassaolo seuraa polkuavaruuden kompaktiudesta sekä energian alhaalta puolijatkuvuudesta. Alhaalta puolijatkuvuuden osoittaminen on yleinen strategia minimointiongelmien ratkaisemisessa. Alhaalta puolijatkuvuus on jatkuvuutta heikompi ehto funktiolle. Rakenteeltaan optimaalinen liikennesuunnitelma tulee olemaan haarautunut eli puumainen, mutta tämän perustelu sivuutetaan. | fi |
dc.format.extent | 43 | |
dc.format.mimetype | application/pdf | |
dc.language.iso | fi | |
dc.subject.other | massansiirto | |
dc.subject.other | liikennesuunnitelma | |
dc.title | Optimaalisten liikennesuunnitelmien olemassaolo | |
dc.identifier.urn | URN:NBN:fi:jyu-202006013606 | |
dc.type.ontasot | Pro gradu -tutkielma | fi |
dc.type.ontasot | Master’s thesis | en |
dc.contributor.tiedekunta | Matemaattis-luonnontieteellinen tiedekunta | fi |
dc.contributor.tiedekunta | Faculty of Sciences | en |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.oppiaine | Matematiikan opettajankoulutus | fi |
dc.contributor.oppiaine | Teacher education programme in Mathematics | en |
dc.rights.copyright | Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty. | fi |
dc.rights.copyright | This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited. | en |
dc.type.publication | masterThesis | |
dc.contributor.oppiainekoodi | 4041 | |
dc.subject.yso | matematiikka | |
dc.subject.yso | mittateoria | |
dc.subject.yso | metriset avaruudet | |
dc.format.content | fulltext | |
dc.type.okm | G2 | |