Optimaalisten liikennesuunnitelmien olemassaolo
Tekijät
Päivämäärä
2020Tässä tutkielmassa perehdytään massansiirtoteorian perusteisiin, erityisesti niin kutsuttujen liikennesuunnitelmien kautta. Tutkielman päätuloksena osoitetaan, että liikennesuunnitelman energialle on olemassa optimaalinen liikennesuunnitelma, joka minimoi energian.
Käsiteltävässä massansiirto-ongelmassa tavoitteena on siirtää massaa yhdeltä mitalta toiselle mahdollisimman pienellä kokonaiskustannuksella. Mahdolliset kuljetusreitit määritellään Lipschitz-jatkuvina polkuina. Lipschitz-polkujen muodostama metrinen avaruus osoitetaan kompaktiksi sopivalla etäisyyden valinnalla. Metristä avaruutta kutsutaan kompaktiksi, jos sen jokaisella peitteellä on olemassa äärellinen osapeite.
Mahdollisista kuljetusreiteistä rakennetaan niin kutsuttu liikennesuunnitelma, joka painottaa polkujen avaruutta siten, että painotetut polut kuljettavat massaa suhteessa annettuun painoon. Liikennesuunnitelma on tällöin luonnollista määritellä mittana Lipschitz-polkujen avaruuteen. Liikennesuunnitelmalta vaaditaan, että äärettömän pitkät polut saavat painokseen nollan, toisin sanoen äärettömän pitkien polkujen osajoukko on nollamittainen liikennesuunnitelman suhteen.
Liikennesuunnitelmalle määritellään energia, joka on yhdenmukainen diskreettien massansiirto-ongelmien kanssa. Energia tulee riippumaan käytettyjen liikennesuunnitelman painottamien polkujen pituuksista ja kertaluvuista. Kertaluku kuvastaa sitä, kuinka usea polku käy samassa pisteessä. Energian minimoimiseksi pituus ja kertaluku halutaan luonnollisesti minimoida optimaalisen liikennesuunnitelman löytämisellä.
Optimaalisen liikennesuunnitelman olemassaolo seuraa polkuavaruuden kompaktiudesta sekä energian alhaalta puolijatkuvuudesta. Alhaalta puolijatkuvuuden osoittaminen on yleinen strategia minimointiongelmien ratkaisemisessa. Alhaalta puolijatkuvuus on jatkuvuutta heikompi ehto funktiolle. Rakenteeltaan optimaalinen liikennesuunnitelma tulee olemaan haarautunut eli puumainen, mutta tämän perustelu sivuutetaan.
...
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29743]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On a class of singular measures satisfying a strong annular decay condition
Arroyo, Ángel; Llorente, José G. (American Mathematical Society, 2019)A metric measure space (X, d, t) is said to satisfy the strong annular decay condition if there is a constant C > 0 such that for each x E X and all 0 < r < R. If do., is the distance induced by the co -norm in RN, we ... -
Metric Rectifiability of H-regular Surfaces with Hölder Continuous Horizontal Normal
Di Donato, Daniela; Fässler, Katrin; Orponen, Tuomas (Oxford University Press, 2022)Two definitions for the rectifiability of hypersurfaces in Heisenberg groups Hn have been proposed: one based on H-regular surfaces and the other on Lipschitz images of subsets of codimension-1 vertical subgroups. The ... -
Quasispheres and metric doubling measures
Lohvansuu, Atte; Rajala, Kai; Rasimus, Martti (American Mathematical Society, 2018)Applying the Bonk-Kleiner characterization of Ahlfors 2-regular quasispheres, we show that a metric two-sphere X is a quasisphere if and only if X is linearly locally connected and carries a weak metric doubling measure, ... -
Quasiconformal Jordan Domains
Ikonen, Toni (Walter de Gruyter GmbH, 2021)We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains (Y,dY). We say that a metric space (Y,dY) is a quasiconformal Jordan domain if the completion Y of (Y,dY) has finite Hausdor 2-measure, ... -
Coarea inequality for monotone functions on metric surfaces
Esmayli, Behnam; Ikonen, Toni; Rajala, Kai (American Mathematical Society (AMS), 2023)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.