Evolutionaariset monitavoiteoptimointialgoritmit
Authors
Date
2020Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Tässä tutkielmassa selvitetään evolutionaaristen monitavoiteoptimointialgoritmien (MOEA) toimintaa. Tutkielmassa käydään evolutionaaristen menetelmien lisäksi läpi monitavoiteoptimointia. MOEA:ia kuvaillaan yleisellä tasolla, ja esitellään joitain tunnettuja algoritmeja pyrkien antamaan mahdollisimman kattavan kokonaisukuvan algoritmeista. Tutkielmassa vertaillaan myös algoritmeja toisiinsa ja tutkitaan niiden tehokkuutta. Goal of this thesis is to study evolutionary multiobjective optimization algorithms (MOEA). Multiobjective optimization is also presented. MOEAs are examined on abstract level and known algorithms are presented to give a comprehensive view of the algorithms. Algoritms are also compared to each other and their efficiency is explored.
Keywords
Metadata
Show full item recordCollections
- Kandidaatintutkielmat [4764]
Related items
Showing items with similar title or keywords.
-
LR-NIMBUS : an interactive algorithm for uncertain multiobjective optimization with lightly robust efficient solutions
Koushki, Javad; Miettinen, Kaisa; Soleimani-damaneh, Majid (Springer Science and Business Media LLC, 2022)In this paper, we develop an interactive algorithm to support a decision maker to find a most preferred lightly robust efficient solution when solving uncertain multiobjective optimization problems. It extends the interactive ... -
Parametrien tunnistus ja datajoukon sovittaminen optimoinnin avulla Potku-ohjelmassa
Rekilä, Heta (2019)Tutkielmassa perehdytään erityyppisiin optimointialgoritmeihin, joita modeFRONTIER-optimointiympäristö tarjoaa. Ympäristöä voi käyttää tehokkaaseen optimointialgoritmien vertailuun. Algoritmien suoriutumisen arviointia ... -
DESDEO: The Modular and Open Source Framework for Interactive Multiobjective Optimization
Misitano, Giovanni; Saini, Bhupinder Singh; Afsar, Bekir; Shavazipour, Babooshka; Miettinen Kaisa (Institute of Electrical and Electronics Engineers (IEEE), 2021)Interactive multiobjective optimization methods incorporate preferences from a human decision maker in the optimization process iteratively. This allows the decision maker to focus on a subset of solutions, learn about the ... -
On the Extension of the DIRECT Algorithm to Multiple Objectives
Lovison, Alberto; Miettinen, Kaisa (Springer Science and Business Media LLC, 2021)Deterministic global optimization algorithms like Piyavskii–Shubert, DIRECT, EGO and many more, have a recognized standing, for problems with many local optima. Although many single objective optimization algorithms have ... -
A New Paradigm in Interactive Evolutionary Multiobjective Optimization
Saini, Bhupinder Singh; Hakanen, Jussi; Miettinen, Kaisa (Springer, 2020)Over the years, scalarization functions have been used to solve multiobjective optimization problems by converting them to one or more single objective optimization problem(s). This study proposes a novel idea of solving ...