Show simple item record

dc.contributor.advisorParkkonen, Jouni
dc.contributor.authorKosonen, Kati
dc.date.accessioned2020-04-21T11:41:32Z
dc.date.available2020-04-21T11:41:32Z
dc.date.issued2020
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/68629
dc.description.abstractTässä tutkielmassa osoitetaan, että kaksi satunnaisesti valittua kokonaislukua ovat keskenään suhteellisia alkulukuja 61% todennäköisyydellä. Tulosta lähestytään lukuteorian näkökulmasta erilaisten funktioiden ja niiden ominaisuuksien avulla. Eulerin \phi-funktio on merkittävässä roolissa, sillä tutkielman päätulos on Eulerin funktion keskimääräisen kasvunopeuden näyttäminen. Tämän tuloksen sovelluksena pystytään klassisen todennäköisyyden avulla osoittamaan alkulukuparien todennäköisyys. Tulos keskimääräiselle kasvunopeudelle on merkittävä sen monipuolisten sovellusmahdollisuuksien takia. Tutkielmassa perehdytään lukuteorian kahteen keskeiseen multiplikatiiviseen funktioon, Eulerin \phi-funktioon ja Möbiuksen \mu-funktioon. Käydään molempien funktioiden huomionarvoiset tulokset läpi ja osoitetaan, miten funktiot ovat yhteydessä toisiinsa. Möbiuksen funktio on tutkielman tärkeimpiä työkaluja, koska sen yhteydet muihin tutkielmassa esiteltäviin funktioihin ovat päätuloksen kannalta olennaisia. Analyyttiseen lukuteoriaan syvennytään tutkielman edetessä, kun käsitellään funktiota \zeta reaalisten arvojen tapauksessa. Eulerin \zeta-funktio määritellään sarjana, mutta se voidaan esittää myös päättymättömänä tulona. Päättymättömät tulot ovat tutkielman käytetyimpiä työkaluja, joten perehdytään niiden teoriaan tarkemmin. Funktioon \zeta liittyy myös tunnettu lukuteorian tulos, Baselin ongelma, jolle annetaan kaksi erilaista todistusta. Tutkielmassa tarkastellaan myös toista Eulerin funktion nopeuden sovellusta. Toinen sovellus liittyy Fareyn jonoiksi kutsuttujen murtolukujonojen teoriaan, johon perehdytään vuonna 1747 esitetyn kysymyksen saattelemana. Keskimääräisen kasvunopeuden tuloksen avulla pystytään osoittamaan Fareyn jonojen asymptoottinen pituus. Tutkielman lopuksi käsitellään suppeasti kompleksianalyysin tuloksia sarjoille, jotta saadaan pohja esitellä kompleksinen \zeta-funktio ja sen nollakohdat. Kompleksisen \zeta-funktion nollakohtien tarkasteluun liittyy vahvasti tunnetuin lukuteorian avoin ongelma, Riemannin hypoteesi. Käydään läpi millaisia lähestymistapoja matemaatikoilla on ollut vuosien varrella hypoteesin todistamiseksi.fi
dc.format.extent61
dc.language.isofi
dc.subject.otherBaselin ongelma
dc.subject.otherRiemannin hypoteesi
dc.subject.otherFareyn jonot
dc.subject.otheralkulukuparit
dc.subject.othermultiplikatiivisuus
dc.titleSuhteellisten alkulukuparien todennäköisyys
dc.identifier.urnURN:NBN:fi:jyu-202004212839
dc.type.ontasotMaster’s thesisen
dc.type.ontasotPro gradu -tutkielmafi
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.oppiaineMatematiikan opettajankoulutusfi
dc.contributor.oppiaineTeacher education programme in Mathematicsen
dc.rights.copyrightJulkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.fi
dc.rights.copyrightThis publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.en
dc.contributor.oppiainekoodi4041
dc.subject.ysotodennäköisyys
dc.subject.ysomatematiikka
dc.subject.ysolukuteoria
dc.subject.ysoalkuluvut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record