The Radó-Kneser-Choquet theorem for p-harmonic mappings between Riemannian surfaces
Adamowicz, T., Jääskeläinen, J., & Koski, A. (2020). The Radó-Kneser-Choquet theorem for p-harmonic mappings between Riemannian surfaces. Revista Matematica Iberoamericana, 36(6), 1779-1834. https://doi.org/10.4171/rmi/1183
Julkaistu sarjassa
Revista Matematica IberoamericanaPäivämäärä
2020Oppiaine
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Tekijänoikeudet
© 2020 European Mathematical Society
In the planar setting, the Radó–Kneser–Choquet theorem states that a harmonic map from the unit disk onto a Jordan domain bounded by a convex curve is a diffeomorphism provided that the boundary mapping is a homeomorphism. We prove the injectivity criterion of Radó–Kneser–Choquet for p-harmonic mappings between Riemannian surfaces.
In our proof of the injectivity criterion we approximate the p-harmonic map with auxiliary mappings that solve uniformly elliptic systems. We prove that each auxiliary mapping has a positive Jacobian by a homotopy argument. We keep the maps injective all the way through the homotopy with the help of the minimum principle for a certain subharmonic expression that is related to the Jacobian.
Julkaisija
European Mathematical Society Publishing HouseISSN Hae Julkaisufoorumista
0213-2230Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/34691352
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Euroopan komissio; Suomen AkatemiaRahoitusohjelmat(t)
EU:n 7. puiteohjelma (FP7); Tutkijatohtori, SA
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
T. Adamowicz was supported by a grant of National Science Center, Poland (NCN), UMO2013/09/D/ST1/03681. J. Jääskeläinen was supported by the Academy of Finland (318636 and 276233). A. Koski was supported by the Väisälä Foundation and the ERC Starting Grant number 307023.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Conformality and Q-harmonicity in sub-Riemannian manifolds
Capogna, Luca; Citti, Giovanna; Le Donne, Enrico; Ottazzi, Alessandro (Elsevier Masson, 2019)We establish regularity of conformal maps between sub-Riemannian manifolds from regularity of Q-harmonic functions, and in particular we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth in all contact ... -
Curvature exponent and geodesic dimension on Sard-regular Carnot groups
Nicolussi Golo, Sebastiano; Zhang, Ye (De Gruyter, 2024)In this study, we characterize the geodesic dimension NGEO and give a new lower bound to the curvature exponent NCE on Sard-regular Carnot groups. As an application, we give an example of step-two Carnot group on which NCE ... -
Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure
Ambrosio, Luigi; Gigli, Nicola; Mondino, Andrea; Rajala, Tapio (American Mathematical Society, 2015)In a prior work of the first two authors with Savar´e, a new Riemannian notion of a lower bound for Ricci curvature in the class of metric measure spaces (X, d, m) was introduced, and the corresponding class of spaces ... -
Lipschitz Carnot-Carathéodory Structures and their Limits
Antonelli, Gioacchino; Le Donne, Enrico; Nicolussi Golo, Sebastiano (Springer Science and Business Media LLC, 2023)In this paper we discuss the convergence of distances associated to converging structures of Lipschitz vector fields and continuously varying norms on a smooth manifold. We prove that, under a mild controllability assumption ... -
p-harmonic coordinates for Hölder metrics and applications
Julin, Vesa; Liimatainen, Tony; Salo, Mikko (International Press, 2017)We show that on any Riemannian manifold with H¨older continuous metric tensor, there exists a p-harmonic coordinate system near any point. When p = n this leads to a useful gauge condition for regularity results in ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.