dc.contributor.author | Vilen, M. | |
dc.contributor.author | Kelly, J. M. | |
dc.contributor.author | Kankainen, A. | |
dc.contributor.author | Brodeur, M. | |
dc.contributor.author | Aprahamian, A. | |
dc.contributor.author | Canete, L. | |
dc.contributor.author | de Groote, R. P. | |
dc.contributor.author | de Roubin, A. | |
dc.contributor.author | Eronen, T. | |
dc.contributor.author | Jokinen, A. | |
dc.contributor.author | Moore, I. D. | |
dc.contributor.author | Mumpower, M. R. | |
dc.contributor.author | Nesterenko, D. A. | |
dc.contributor.author | O'Brien, J. | |
dc.contributor.author | Perdomo, A. Pardo | |
dc.contributor.author | Penttilä, H. | |
dc.contributor.author | Reponen, M. | |
dc.contributor.author | Rinta-Antila, S. | |
dc.contributor.author | Surman, R. | |
dc.date.accessioned | 2020-03-30T07:14:54Z | |
dc.date.available | 2020-03-30T07:14:54Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Vilen, M., Kelly, J. M., Kankainen, A., Brodeur, M., Aprahamian, A., Canete, L., de Groote, R. P., de Roubin, A., Eronen, T., Jokinen, A., Moore, I. D., Mumpower, M. R., Nesterenko, D. A., O'Brien, J., Perdomo, A. P., Penttilä, H., Reponen, M., Rinta-Antila, S., & Surman, R. (2020). Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP. <i>Physical Review C</i>, <i>101</i>(3), Article 034312. <a href="https://doi.org/10.1103/PhysRevC.101.034312" target="_blank">https://doi.org/10.1103/PhysRevC.101.034312</a> | |
dc.identifier.other | CONVID_35107704 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/68359 | |
dc.description.abstract | The JYFLTRAP double Penning trap at the Ion Guide Isotope Separator On-Line facility has been used to
measure the atomic masses of 13 neutron-rich rare-earth isotopes. Eight of the nuclides, 161Pm, 163Sm, 164,165Eu, 167Gd, and 165,167,168Tb, were measured for the first time. The systematics of the mass surface has been studied
via one- and two-neutron separation energies as well as neutron pairing-gap and shell-gap energies. The protonneutron pairing strength has also been investigated. The impact of the new mass values on the astrophysical rapid neutron capture process has been studied. The calculated abundance distribution results in a better agreement
with the solar abundance pattern near the top of the rare-earth abundance peak at around A ≈ 165. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.ispartofseries | Physical Review C | |
dc.rights | In Copyright | |
dc.subject.other | binding energy and masses | |
dc.subject.other | nuclear astrophysics | |
dc.subject.other | nuclear structure and decays | |
dc.subject.other | rare and new isotopes | |
dc.subject.other | r process | |
dc.title | Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202003302571 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.oppiaine | Kiihdytinlaboratorio | fi |
dc.contributor.oppiaine | Accelerator Laboratory | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2469-9985 | |
dc.relation.numberinseries | 3 | |
dc.relation.volume | 101 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2020 American Physical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 295207 | |
dc.relation.grantnumber | 771036 | |
dc.relation.grantnumber | 771036 | |
dc.relation.grantnumber | 275389 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/771036/EU//MAIDEN | |
dc.subject.yso | astrofysiikka | |
dc.subject.yso | ydinfysiikka | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p20188 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14759 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1103/PhysRevC.101.034312 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | ERC Consolidator Grant | en |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundingprogram | ERC Consolidator Grant | fi |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundinginformation | This work has been supported by the Academy of Finland under the Finnish Centre of Excellence Programme 2012– 2017 (Nuclear and Accelerator Based Physics Research at JYFL) and by the National Science Foundation (NSF) Grants No. PHY-1713857. A.K., D.N., L.C., and T.E. acknowledge support from the Academy of Finland under Projects No. 275389 and No. 295207. M.M. carried out this work under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. R.S. was funded in part by the DOE Office of Science under Contract No. DE-SC0013039. The authors thank S. Frauendorf and I. Bentley for fruitful discussions. This work has been supported by the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 771036 (ERC CoG MAIDEN). | |
dc.type.okm | A1 | |