Seasonal cycle of benthic denitrification and DNRA in the aphotic coastal zone, northern Baltic Sea
Hellemann, D., Tallberg, P., Aalto, S.L., Bartoli, M., & Hietanen, S. (2020). Seasonal cycle of benthic denitrification and DNRA in the aphotic coastal zone, northern Baltic Sea. Marine Ecology Progress Series, 637, 15-28. https://doi.org/10.3354/meps13259
Published in
Marine Ecology Progress SeriesDate
2020Copyright
© The authors 2020
Current knowledge on the seasonality of benthic nitrate reduction pathways in the aphotic, density stratified coastal zone of the Baltic Sea is largely based on data from muddy sediments, neglecting the potential contribution of sandy sediments. To gain a more comprehensive understanding of seasonality in this part of the Baltic Sea coast, we measured rates of benthic denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA) monthly in the ice-free period of 2016 in both sandy and muddy aphotic sediments, northwestern Gulf of Finland. No anammox was observed. The seasonal cycle of denitrification in both sediment types was related to the hydrography-driven development of bottom water temperature. The seasonal cycle of DNRA was less clear and likely connected to a combination of bottom water temperature, carbon to nitrogen ratio, and substrate competition with denitrification. Denitrification and DNRA rates were 50–80 and 20% lower in the sandy than in the muddy sediment. The share of DNRA in total nitrate reduction, however, was higher in the sandy than in the muddy sediment, being (by ~50%) the highest DNRA share in sandy sediments so far measured. Our data add to the small pool of published studies showing significant DNRA in both cold and/or sandy sediments and suggest that DNRA is currently underestimated in the Baltic coastal nitrogen filter. Our results furthermore emphasize that the various environmental conditions of a coastal habitat (light regime, hydrography, and geomorphology) affect biogeochemical element cycling and thus need to be considered in data interpretation.
...


Publisher
Inter-ResearchISSN Search the Publication Forum
0171-8630Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/34972009
Metadata
Show full item recordCollections
Additional information about funding
This work was supported by the BONUS COCOA project (grant agreement 2112932-1) funded jointly by the European Union and the Academy of Finland, the Academy of Finland (projects 267112, 272964, 303774, and 310302), the Onni Talas Foundation and the Finnish Cultural Foundation.License
Related items
Showing items with similar title or keywords.
-
Autochthonous organic matter promotes DNRA and suppresses N2O production in sediments of the coastal Baltic Sea
Aalto, Sanni L.; Asmala, Eero; Jilbert, Tom; Hietanen, Susanna (Elsevier, 2021)Coastal environments are nitrogen (N) removal hot spots, which regulate the amount of land-derived N reaching the open sea. However, mixing between freshwater and seawater creates gradients of inorganic N and bioavailable ... -
Sediment diffusion method improves wastewater nitrogen removal in the receiving lake sediments
Aalto, Sanni L.; Saarenheimo, Jatta; Ropponen, Janne; Juntunen, Janne; Rissanen, Antti; Tiirola, Marja (IWA Publishing, 2018)Sediment microbes have a great potential to transform reactive N to harmless N2, thus decreasing wastewater nitrogen load into aquatic ecosystems. Here, we examined if spatial allocation of the wastewater discharge by a ... -
Nitrate removal microbiology in woodchip bioreactors : a case-study with full-scale bioreactors treating aquaculture effluents
Aalto, Sanni L.; Suurnäkki, Suvi; von Ahnen, Mathis; Siljanen, Henri M. P.; Pedersen, Per Bovbjerg; Tiirola, Marja (Elsevier, 2020)Woodchip bioreactors are viable low-cost nitrate (NO3−) removal applications for treating agricultural and aquaculture discharges. The active microbial biofilms growing on woodchips are conducting nitrogen (N) removal, ... -
Microbial controls of greenhouse gas emissions from boreal lakes
Saarenheimo, Jatta (University of Jyväskylä, 2015) -
Behaviour of sediment-associated silver nanoparticles and their toxicity to Lumbriculus variegatus
Rajala, Juho (University of Jyväskylä, 2017)The increasing use of silver nanoparticles (AgNPs) in industry and consumer products results in the increasing environmental concentrations of AgNPs. In the aquatic environment, sediment is the major sink for the AgNPs. ...