Show simple item record

dc.contributor.authorKolari, Kalle
dc.contributor.authorBulatov, Evgeny
dc.contributor.authorTatikonda, Rajendhraprasad
dc.contributor.authorBertula, Kia
dc.contributor.authorKalenius, Elina
dc.contributor.authorNonappa
dc.contributor.authorHaukka, Matti
dc.date.accessioned2020-03-04T07:01:12Z
dc.date.available2020-03-04T07:01:12Z
dc.date.issued2020
dc.identifier.citationKolari, Kalle, Bulatov, Evgeny, Tatikonda, Rajendhraprasad, Bertula, Kia, Kalenius, Elina, Nonappa, Haukka, Matti. (2020). Self-healing, luminescent metallogelation driven by synergistic metallophilic and fluorine–fluorine interactions. <i>Soft matter</i>, <i>16</i>(11), 2795-2802. <a href="https://doi.org/10.1039/C9SM02186H" target="_blank">https://doi.org/10.1039/C9SM02186H</a>
dc.identifier.otherCONVID_34844146
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/68049
dc.description.abstractSquare planar platinum(ii) complexes are attractive building blocks for multifunctional soft materials due to their unique optoelectronic properties. However, for soft materials derived from synthetically simple discrete metal complexes, achieving a combination of optical properties, thermoresponsiveness and excellent mechanical properties is a major challenge. Here, we report the rapid self-recovery of luminescent metallogels derived from platinum(ii) complexes of perfluoroalkyl and alkyl derivatives of terpyridine ligands. Using single crystal X-ray diffraction studies, we show that the presence of synergistic platinum-platinum (PtPt) metallopolymerization and fluorine-fluorine (FF) interactions are the major driving forces in achieving hierarchical superstructures. The resulting bright red gels showed the presence of highly entangled three-dimensional networks and helical nanofibres with both (P and M) handedness. The gels recover up to 87% of their original storage modulus even after several cycles under oscillatory step-strain rheological measurements showing rapid self-healing. The luminescence properties, along with thermo- and mechanoresponsive gelation, provide the potential to utilize synthetically simple discrete complexes in advanced optical materials.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.ispartofseriesSoft matter
dc.rightsCC BY 3.0
dc.titleSelf-healing, luminescent metallogelation driven by synergistic metallophilic and fluorine–fluorine interactions
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202003042271
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineEpäorgaaninen ja analyyttinen kemiafi
dc.contributor.oppiaineSoveltava kemiafi
dc.contributor.oppiaineOrgaaninen kemiafi
dc.contributor.oppiaineInorganic and Analytical Chemistryen
dc.contributor.oppiaineApplied Chemistryen
dc.contributor.oppiaineOrganic Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.format.pagerange2795-2802
dc.relation.issn1744-683X
dc.relation.numberinseries11
dc.relation.volume16
dc.type.versionpublishedVersion
dc.rights.copyright© The Royal Society of Chemistry 2020
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber295581
dc.subject.ysokompleksiyhdisteet
dc.subject.ysofluori
dc.subject.ysoplatina
dc.subject.ysopolymeerit
dc.subject.ysogeelit
dc.subject.ysofysikaaliset ominaisuudet
dc.subject.ysoluminesenssi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p30190
jyx.subject.urihttp://www.yso.fi/onto/yso/p16439
jyx.subject.urihttp://www.yso.fi/onto/yso/p12535
jyx.subject.urihttp://www.yso.fi/onto/yso/p926
jyx.subject.urihttp://www.yso.fi/onto/yso/p12973
jyx.subject.urihttp://www.yso.fi/onto/yso/p1174
jyx.subject.urihttp://www.yso.fi/onto/yso/p1646
dc.rights.urlhttps://creativecommons.org/licenses/by/3.0/
dc.relation.doi10.1039/C9SM02186H
dc.relation.funderSuomen Akatemiafi
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationKK and RT acknowledge the kind financial support from the Magnus Ehrnrooth Foundation, and Academy of Finland (M. H. Proj. no. 295581). Academy of Finland's Centre of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials (HYBER, 2014–2019) and Aalto University Nanomicroscopy Centre (Aalto-NMC) are acknowledged for the use of their facilities.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 3.0
Except where otherwise noted, this item's license is described as CC BY 3.0