Show simple item record

dc.contributor.authorVirtanen, P.
dc.contributor.authorBraggio, A.
dc.contributor.authorGiazotto, F.
dc.date.accessioned2020-02-25T09:42:30Z
dc.date.available2020-02-25T09:42:30Z
dc.date.issued2019
dc.identifier.citationVirtanen, P., Braggio, A., & Giazotto, F. (2019). Superconducting size effect in thin films under electric field: Mean-field self-consistent model. <i>Physical Review B</i>, <i>100</i>(22), Article 224506. <a href="https://doi.org/10.1103/PhysRevB.100.224506" target="_blank">https://doi.org/10.1103/PhysRevB.100.224506</a>
dc.identifier.otherCONVID_34710270
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67950
dc.description.abstractWe consider the effects of an externally applied electrostatic field on superconductivity, self-consistently within a BCS mean-field model, for a clean three-dimensional (3D) metal thin film. The electrostatic change in superconducting condensation energy scales as Δ/μ close to subband edges as a function of the Fermi energy μ and follows 3D scaling (Δ/μ)2 away from them. We discuss nonlinearities beyond the gate effect and contrast results with recent experiments on gating effects on Josephson junctions.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review B
dc.rightsIn Copyright
dc.subject.othersuperconducting phase transition
dc.subject.othermesoscopics
dc.subject.otherthin films
dc.titleSuperconducting size effect in thin films under electric field: Mean-field self-consistent model
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202002252178
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2469-9950
dc.relation.numberinseries22
dc.relation.volume100
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 American Physical Society
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber800923
dc.relation.grantnumber800923
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/800923/EU//SUPERTED
dc.subject.ysosuprajohtavuus
dc.subject.ysoohutkalvot
dc.subject.ysosuprajohteet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p9398
jyx.subject.urihttp://www.yso.fi/onto/yso/p16644
jyx.subject.urihttp://www.yso.fi/onto/yso/p9946
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1103/PhysRevB.100.224506
dc.relation.funderEuropean Commissionen
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramFET Future and Emerging Technologies, H2020en
jyx.fundingprogramFET Future and Emerging Technologies, H2020fi
jyx.fundinginformationF.G. and P.V. acknowledge the MIURFIRB2013-Project Coca (Grant No. RBFR1379UX) and the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 615187-COMANCHE and the Horizon research and innovation program under Grant Agreement No. 800923 (SUPERTED) for partial financial support. F.G. acknowledges the innovation program under Grant No. 777222 ATTRACT (Project T-CONVERSE) and the Tuscany Region under the FARFAS 2014 project SCIADRO. A.B. acknowledges the CNR-CONICET cooperation program “Energy conversion in quantum nanoscale hybrid devices,” the SNS-WIS joint laboratory QUANTRA, funded by the Italian Ministry of Foreign Affairs and International Cooperation and the Royal Society through the international exchanges between the United Kingdom and Italy (Grants No. IES R3 170054 and No. IEC R2 192166).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright