Simulation of Matrix Product States For Dissipation and Thermalization Dynamics of Open Quantum Systems
Agasti, S. (2020). Simulation of Matrix Product States For Dissipation and Thermalization Dynamics of Open Quantum Systems. Journal of Physics Communications, 4(1), Article 015002. https://doi.org/10.1088/2399-6528/ab6141
Published in
Journal of Physics CommunicationsAuthors
Date
2020Copyright
© 2020 The Author(s)
We transform the system/reservoir coupling model into a one-dimensional semi-infinite discrete chain through unitary transformation to simulate the open quantum system numerically with the help of time evolving block decimation (TEBD) algorithm. We apply the method to study the dynamics of dissipative systems. We also generate the thermal state of a multimode bath using minimally entangled typical thermal state (METTS) algorithm, and investigate the impact of the thermal bath on an empty system. For both cases, we give an extensive analysis of the impact of the modeling and simulation parameters, and compare the numerics with the analytics.
Publisher
Institute of Physics Publishing Ltd.ISSN Search the Publication Forum
2399-6528Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/34465609
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Research Fellow, AoFAdditional information about funding
This work was supported by the Academy of Finland under grant no. 275245.License
Related items
Showing items with similar title or keywords.
-
Influence of dissipative tunneling on the photodielectric effect associated with the excitation of impurity complexes A+ + e in a quasi-zero-dimensional structure
Krevchik, V. D.; Razumov, A. V.; Semenov, M. B.; Levashov, A. V.; Shorokhov, A. V. (ITMO University, 2022)Effect of tunneling decay for the quasi-stationary A+-state, in an impurity complex A+ + e (a hole, localized on a neutral acceptor, interacting with an electron, localized in the ground state of a quantum dot) on the ... -
Numerical simulation of free dissipative open quantum system and establishment of a formula for π
Agasti, Souvik (American Institute of Physics, 2020)We transform the system/reservoir coupling model into a one-dimensional semi-infinite discrete chain with nearest neighbor interaction through a unitary transformation, and, simulate the dynamics of free dissipative open ... -
Theory of phase-mixing amplification in an optomechanical system
Ockeloen-Korppi, C. F.; Heikkilä, Tero; Sillanpää, M. A.; Massel, Francesco (Institute of Physics Publishing Ltd., 2017)The investigation of the ultimate limits imposed by quantum mechanics on amplification represents an important topic both on a fundamental level and from the perspective of potential applications. We discuss here a novel ... -
Assessment of nonnegative matrix factorization algorithms for electroencephalography spectral analysis
Hu, Guoqiang; Zhou, Tianyi; Luo, Siwen; Mahini, Reza; Xu, Jing; Chang, Yi; Cong, Fengyu (BioMed Central, 2020)Background Nonnegative matrix factorization (NMF) has been successfully used for electroencephalography (EEG) spectral analysis. Since NMF was proposed in the 1990s, many adaptive algorithms have been developed. However, ... -
Use of a running coupling in the NLO calculation of forward hadron production
Ducloue, Bertrand; Iancu, E.; Lappi, Tuomas; Mueller, A. H.; Soyez, G.; Triantafyllopoulos, D. N.; Zhu, Yan (American Physical Society, 2018)We address and solve a puzzle raised by a recent calculation [1] of the cross section for particle production in proton-nucleus collisions to next-to-leading order: the numerical results show an unreasonably large dependence ...