Näytä suppeat kuvailutiedot

dc.contributor.authorHsu, Yi-Fang
dc.contributor.authorXu, Weiyong
dc.contributor.authorParviainen, Tiina
dc.contributor.authorHämäläinen, Jarmo A.
dc.date.accessioned2020-01-29T13:18:59Z
dc.date.available2020-01-29T13:18:59Z
dc.date.issued2020
dc.identifier.citationHsu, Y.-F., Xu, W., Parviainen, T., & Hämäläinen, J. A. (2020). Context-dependent minimisation of prediction errors involves temporal-frontal activation. <i>NeuroImage</i>, <i>207</i>, Article 116355. <a href="https://doi.org/10.1016/j.neuroimage.2019.116355" target="_blank">https://doi.org/10.1016/j.neuroimage.2019.116355</a>
dc.identifier.otherCONVID_33540186
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67599
dc.description.abstractAccording to the predictive coding model of perception, the brain constantly generates predictions of the upcoming sensory inputs. Perception is realised through a hierarchical generative model which aims at minimising the discrepancy between predictions and the incoming sensory inputs (i.e., prediction errors). Notably, prediction errors are weighted depending on precision of prior information. However, it remains unclear whether and how the brain monitors prior precision when minimising prediction errors in different contexts. The current study used magnetoencephalography (MEG) to address this question. We presented participants with repetition of two non-predicted probes embedded in context of high and low precision, namely mispredicted and unpredicted probes. Non-parametric permutation statistics showed that the minimisation of precision-weighted prediction errors started to dissociate on early components of the auditory responses (including the P1m and N1m), indicating that the brain can differentiate between these scenarios at an early stage of the auditory processing stream. Permutation statistics conducted on the depth-weighted statistical parametric maps (dSPM) source solutions of the repetition difference waves between the two non-predicted probes further revealed a cluster extending from the frontal areas to the posterior temporal areas in the left hemisphere. Overall, the results suggested that context precision not only changes the weighting of prediction errors but also modulates the dynamics of how prediction errors are minimised upon the learning of statistical regularities (achieved by stimulus repetition), which likely involves differential activation at temporal-frontal regions.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesNeuroImage
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherpredictive coding
dc.subject.otherauditory perception
dc.subject.otherrepetition suppression
dc.subject.otherrepetition enhancement
dc.subject.othermagnetoencephalography (MEG)
dc.titleContext-dependent minimisation of prediction errors involves temporal-frontal activation
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202001291866
dc.contributor.laitosPsykologian laitosfi
dc.contributor.laitosDepartment of Psychologyen
dc.contributor.oppiainePsykologiafi
dc.contributor.oppiaineMonitieteinen aivotutkimuskeskusfi
dc.contributor.oppiaineHyvinvoinnin tutkimuksen yhteisöfi
dc.contributor.oppiainePsychologyen
dc.contributor.oppiaineCentre for Interdisciplinary Brain Researchen
dc.contributor.oppiaineSchool of Wellbeingen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1053-8119
dc.relation.volume207
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 the Author(s)
dc.rights.accesslevelopenAccessfi
dc.subject.ysokuulohavainnot
dc.subject.ysohavaitseminen
dc.subject.ysoMEG
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p23127
jyx.subject.urihttp://www.yso.fi/onto/yso/p5293
jyx.subject.urihttp://www.yso.fi/onto/yso/p3329
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.neuroimage.2019.116355
jyx.fundinginformationThis work was supported by Taiwan Ministry of Science and Technology (grant number MOST105-2410-H-003-145-MY3 and MOST107-2636-H-003-001) to YFH. We thank Imaging Center for Integrated Body, Mind, and Culture Research at National Taiwan University (funded by Taiwan Ministry of Science and Technology) for technical and facility supports. We also thank Miss YC Chung, Mr HE Lo, and Mr HS Huang for assistance with MEG data collection.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0