IEEE Access Special Section Editorial : Cloud and Big Data-Based Next-Generation Cognitive Radio Networks
Zhao, N., Liu, X., Yu, R. F., Chen, Y., Han, T., & Chang, Z. (2019). IEEE Access Special Section Editorial : Cloud and Big Data-Based Next-Generation Cognitive Radio Networks. IEEE Access, 7, 180354-180360. https://doi.org/10.1109/ACCESS.2019.2960172
Julkaistu sarjassa
IEEE AccessPäivämäärä
2019Tekijänoikeudet
© The Authors, 2019
In cognitive radio networks (CRN), secondary users (SUs) are required to detect the presence of the licensed users, known as primary users (PUs), and to find spectrum holes for opportunistic spectrum access without causing harmful interference to PUs. However, due to complicated data processing, non-real-time information exchange and limited memory, SUs often suffer from imperfect sensing and unreliable spectrum access. Cloud computing can solve this problem by allowing the data to be stored and processed in a shared environment. Furthermore, the information from a massive number of SUs allows for more comprehensive information exchanges to assist the resource allocation and interference management at the cloud center while relieving the stringent capacity demands in fronthaul links. Moreover, spectrum resources should be made available to more users, especially when the spectrum is underutilized but occupies a large band. Hence, cloud-based CRN can generate massive sensing samples that will benefit the applications of big data algorithms. The approaches to spectrum sensing and spectrum management can be greatly improved with decision-making capabilities of spectral big data.
...
Julkaisija
IEEEISSN Hae Julkaisufoorumista
2169-3536Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/34156363
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
IEEE Access Special Section Editorial : Cloud and Big Data-Based Next-Generation Cognitive Radio Networks
Zhao, Nan; Liu, Xin; Yu, Richard F.; Chen, Yunfei; Han, Tao; Chang, Zheng (IEEE, 2019)In cognitive radio networks (CRN), secondary users (SUs) are required to detect the presence of the licensed users, known as primary users (PUs), and to find spectrum holes for opportunistic spectrum access without causing ... -
Cooperative spectrum sensing schemes for future dynamic spectrum access infrastructures
Abdi Mahmoudaliloo, Younes (University of Jyväskylä, 2016) -
Advanced voice and data solutions for evolution of cellular network system
Chen, Tao (University of Jyväskylä, 2014) -
Spectrum and energy efficient solutions for OFDMA collaborative wireless networks
Chang, Zheng (University of Jyväskylä, 2013) -
Generative Diffusion Model-Based Deep Reinforcement Learning for Uplink Rate-Splitting Multiple Access in LEO Satellite Networks
Wang, Xingjie; Wang, Kan; Zhang, Di; Li, Junhuai; Zhou, Momiao; Hämäläinen, Timo (IEEE Computer Society Press, 2024)This work studies the joint transmit power control and receive beamforming in uplink rate splitting multiple access (RSMA)-based low earth orbit (LEO) satellite networks, using both generative diffusion model and proximal ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.