Show simple item record

dc.contributor.authorPaasonen, Jaakko
dc.contributor.authorLaakso, Hanne
dc.contributor.authorPirttimäki, Tiina
dc.contributor.authorStenroos, Petteri
dc.contributor.authorSalo, Raimo A.
dc.contributor.authorZhurakovskaya, Ekaterina
dc.contributor.authorLehto, Lauri J.
dc.contributor.authorTanila, Heikki
dc.contributor.authorGarwood, Michael
dc.contributor.authorMichaeli, Shalom
dc.contributor.authorIdiyatullin, Djaudat
dc.contributor.authorMangia, Silvia
dc.contributor.authorGröhn, Olli
dc.date.accessioned2020-01-21T13:55:35Z
dc.date.available2020-01-21T13:55:35Z
dc.date.issued2020
dc.identifier.citationPaasonen, J., Laakso, H., Pirttimäki, T., Stenroos, P., Salo, R. A., Zhurakovskaya, E., Lehto, L. J., Tanila, H., Garwood, M., Michaeli, S., Idiyatullin, D., Mangia, S., & Gröhn, O. (2020). Multi-band SWIFT enables quiet and artefact-free EEG-fMRI and awake fMRI studies in rat. <i>NeuroImage</i>, <i>206</i>, Article 116338. <a href="https://doi.org/10.1016/j.neuroimage.2019.116338" target="_blank">https://doi.org/10.1016/j.neuroimage.2019.116338</a>
dc.identifier.otherCONVID_33944224
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67446
dc.description.abstractFunctional magnetic resonance imaging (fMRI) studies in animal models provide invaluable information regarding normal and abnormal brain function, especially when combined with complementary stimulation and recording techniques. The echo planar imaging (EPI) pulse sequence is the most common choice for fMRI investigations, but it has several shortcomings. EPI is one of the loudest sequences and very prone to movement and susceptibility-induced artefacts, making it suboptimal for awake imaging. Additionally, the fast gradient-switching of EPI induces disrupting currents in simultaneous electrophysiological recordings. Therefore, we investigated whether the unique features of Multi-Band SWeep Imaging with Fourier Transformation (MB-SWIFT) overcome these issues at a high 9.4 T magnetic field, making it a potential alternative to EPI. MB-SWIFT had 32-dB and 20-dB lower peak and average sound pressure levels, respectively, than EPI with typical fMRI parameters. Body movements had little to no effect on MB-SWIFT images or functional connectivity analyses, whereas they severely affected EPI data. The minimal gradient steps of MB-SWIFT induced significantly lower currents in simultaneous electrophysiological recordings than EPI, and there were no electrode-induced distortions in MB-SWIFT images. An independent component analysis of the awake rat functional connectivity data obtained with MB-SWIFT resulted in near whole-brain level functional parcellation, and simultaneous electrophysiological and fMRI measurements in isoflurane-anesthetized rats indicated that MB-SWIFT signal is tightly linked to neuronal resting-state activity. Therefore, we conclude that the MB-SWIFT sequence is a robust preclinical brain mapping tool that can overcome many of the drawbacks of conventional EPI fMRI at high magnetic fields.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesNeuroImage
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherawake
dc.subject.otherelectroencephalography
dc.subject.otherfunctional connectivity
dc.subject.otherfunctional magnetic resonance imaging
dc.subject.otherrats
dc.titleMulti-band SWIFT enables quiet and artefact-free EEG-fMRI and awake fMRI studies in rat
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202001211395
dc.contributor.laitosPsykologian laitosfi
dc.contributor.laitosDepartment of Psychologyen
dc.contributor.oppiainePsykologiafi
dc.contributor.oppiainePsychologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1053-8119
dc.relation.volume206
dc.type.versionpublishedVersion
dc.rights.copyright©2019 The Authors
dc.rights.accesslevelopenAccessfi
dc.subject.ysotoiminnallinen magneettikuvaus
dc.subject.ysokoe-eläinmallit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p24211
jyx.subject.urihttp://www.yso.fi/onto/yso/p28104
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.neuroimage.2019.116338
jyx.fundinginformationThis work was supported by the National Institutes of Health (U01-NS103569 and P41-EB015894); Academy of Finland (#298007); and the Jane and Aatos Erkko Foundation.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0