dc.contributor.author | Niranjan, Dipankar | |
dc.contributor.author | Toiviainen, Petri | |
dc.contributor.author | Brattico, Elvira | |
dc.contributor.author | Alluri, Vinoo | |
dc.contributor.editor | Liang, Peipeng | |
dc.contributor.editor | Goel, Vinod | |
dc.contributor.editor | Shan, Chunlei | |
dc.date.accessioned | 2020-01-15T12:39:27Z | |
dc.date.available | 2020-01-15T12:39:27Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Niranjan, D., Toiviainen, P., Brattico, E., & Alluri, V. (2019). Dynamic Functional Connectivity in the Musical Brain. In P. Liang, V. Goel, & C. Shan (Eds.), <i>BI 2019 : International Conference on Brain Informatics</i> (11976, pp. 82-91). Springer. Lecture Notes in Computer Science. <a href="https://doi.org/10.1007/978-3-030-37078-7_9" target="_blank">https://doi.org/10.1007/978-3-030-37078-7_9</a> | |
dc.identifier.other | CONVID_33772733 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/67321 | |
dc.description.abstract | Musical training causes structural and functional changes in the brain due to its sensory-motor demands. This leads to differences in how musicians perceive and process music as compared to non-musicians, thereby providing insights into brain adaptations and plasticity. Correlational studies and network analysis investigations have indicated the presence of large-scale brain networks involved in the processing of music and have highlighted differences between musicians and non-musicians. However, studies on functional connectivity in the brain during music listening tasks have thus far focused solely on static network analysis. Dynamic Functional Connectivity (DFC) studies have lately been found useful in unearthing meaningful, time-varying functional connectivity information in both resting-state and task-based experimental settings. In this study, we examine DFC in the fMRI obtained from two groups of participants, 18 musicians and 18 non-musicians, while they listened to a musical stimulus in a naturalistic setting. We utilize spatial Group Independent Component Analysis (ICA), sliding time window correlations, and a deterministic agglomerative clustering of windowed correlation matrices to identify quasi-stable Functional Connectivity (FC) states in the two groups. To compute cluster centroids that represent FC states, we devise and present a method that primarily utilizes windowed correlation matrices occurring repeatedly over time and across participants, while excluding matrices corresponding to spontaneous fluctuations. Preliminary analysis indicate states with greater visuo-sensorimotor integration in musicians, larger presence of DMN states in non-musicians, and variability in states found in musicians due to differences in training and prior experiences. | en |
dc.format.extent | 274 | |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | BI 2019 : International Conference on Brain Informatics | |
dc.relation.ispartofseries | Lecture Notes in Computer Science | |
dc.rights | In Copyright | |
dc.subject.other | dynamic functional connectivity | |
dc.subject.other | clustering | |
dc.subject.other | ICA | |
dc.subject.other | state characterization | |
dc.subject.other | musicians vs. non-musicians | |
dc.title | Dynamic Functional Connectivity in the Musical Brain | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-202001151269 | |
dc.contributor.laitos | Musiikin, taiteen ja kulttuurin tutkimuksen laitos | fi |
dc.contributor.laitos | Department of Music, Art and Culture Studies | en |
dc.contributor.oppiaine | Musiikkitiede | fi |
dc.contributor.oppiaine | Monitieteinen aivotutkimuskeskus | fi |
dc.contributor.oppiaine | Hyvinvoinnin tutkimuksen yhteisö | fi |
dc.contributor.oppiaine | Musicology | en |
dc.contributor.oppiaine | Centre for Interdisciplinary Brain Research | en |
dc.contributor.oppiaine | School of Wellbeing | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-3-030-37077-0 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 82-91 | |
dc.relation.issn | 0302-9743 | |
dc.relation.volume | 11976 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2019 Springer Nature Switzerland AG | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | International Conference on Brain Informatics | |
dc.relation.grantnumber | 272250 | |
dc.subject.yso | aivotutkimus | |
dc.subject.yso | muusikot | |
dc.subject.yso | musiikki | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p23705 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1644 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1808 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1007/978-3-030-37078-7_9 | |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Academy of Finland | en |
jyx.fundingprogram | Akatemiaprofessorin tehtävä, SA | fi |
jyx.fundingprogram | Research post as Academy Professor, AoF | en |
jyx.fundinginformation | This work was supported by the Academy of Finland (project numbers 272250 and 274037) and the Danish National Research Foundation (DNRF117). | |
dc.type.okm | A4 | |