Show simple item record

dc.contributor.authorNiranjan, Dipankar
dc.contributor.authorToiviainen, Petri
dc.contributor.authorBrattico, Elvira
dc.contributor.authorAlluri, Vinoo
dc.contributor.editorLiang, Peipeng
dc.contributor.editorGoel, Vinod
dc.contributor.editorShan, Chunlei
dc.date.accessioned2020-01-15T12:39:27Z
dc.date.available2020-01-15T12:39:27Z
dc.date.issued2019
dc.identifier.citationNiranjan, D., Toiviainen, P., Brattico, E., & Alluri, V. (2019). Dynamic Functional Connectivity in the Musical Brain. In P. Liang, V. Goel, & C. Shan (Eds.), <i>BI 2019 : International Conference on Brain Informatics</i> (11976, pp. 82-91). Springer. Lecture Notes in Computer Science. <a href="https://doi.org/10.1007/978-3-030-37078-7_9" target="_blank">https://doi.org/10.1007/978-3-030-37078-7_9</a>
dc.identifier.otherCONVID_33772733
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67321
dc.description.abstractMusical training causes structural and functional changes in the brain due to its sensory-motor demands. This leads to differences in how musicians perceive and process music as compared to non-musicians, thereby providing insights into brain adaptations and plasticity. Correlational studies and network analysis investigations have indicated the presence of large-scale brain networks involved in the processing of music and have highlighted differences between musicians and non-musicians. However, studies on functional connectivity in the brain during music listening tasks have thus far focused solely on static network analysis. Dynamic Functional Connectivity (DFC) studies have lately been found useful in unearthing meaningful, time-varying functional connectivity information in both resting-state and task-based experimental settings. In this study, we examine DFC in the fMRI obtained from two groups of participants, 18 musicians and 18 non-musicians, while they listened to a musical stimulus in a naturalistic setting. We utilize spatial Group Independent Component Analysis (ICA), sliding time window correlations, and a deterministic agglomerative clustering of windowed correlation matrices to identify quasi-stable Functional Connectivity (FC) states in the two groups. To compute cluster centroids that represent FC states, we devise and present a method that primarily utilizes windowed correlation matrices occurring repeatedly over time and across participants, while excluding matrices corresponding to spontaneous fluctuations. Preliminary analysis indicate states with greater visuo-sensorimotor integration in musicians, larger presence of DMN states in non-musicians, and variability in states found in musicians due to differences in training and prior experiences.en
dc.format.extent274
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofBI 2019 : International Conference on Brain Informatics
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.rightsIn Copyright
dc.subject.otherdynamic functional connectivity
dc.subject.otherclustering
dc.subject.otherICA
dc.subject.otherstate characterization
dc.subject.othermusicians vs. non-musicians
dc.titleDynamic Functional Connectivity in the Musical Brain
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202001151269
dc.contributor.laitosMusiikin, taiteen ja kulttuurin tutkimuksen laitosfi
dc.contributor.laitosDepartment of Music, Art and Culture Studiesen
dc.contributor.oppiaineMusiikkitiedefi
dc.contributor.oppiaineMonitieteinen aivotutkimuskeskusfi
dc.contributor.oppiaineHyvinvoinnin tutkimuksen yhteisöfi
dc.contributor.oppiaineMusicologyen
dc.contributor.oppiaineCentre for Interdisciplinary Brain Researchen
dc.contributor.oppiaineSchool of Wellbeingen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-3-030-37077-0
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange82-91
dc.relation.issn0302-9743
dc.relation.volume11976
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 Springer Nature Switzerland AG
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceInternational Conference on Brain Informatics
dc.relation.grantnumber272250
dc.subject.ysoaivotutkimus
dc.subject.ysomuusikot
dc.subject.ysomusiikki
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p23705
jyx.subject.urihttp://www.yso.fi/onto/yso/p1644
jyx.subject.urihttp://www.yso.fi/onto/yso/p1808
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/978-3-030-37078-7_9
dc.relation.funderSuomen Akatemiafi
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramAkatemiaprofessorin tehtävä, SAfi
jyx.fundingprogramResearch post as Academy Professor, AoFen
jyx.fundinginformationThis work was supported by the Academy of Finland (project numbers 272250 and 274037) and the Danish National Research Foundation (DNRF117).
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright