Näytä suppeat kuvailutiedot

dc.contributor.authorKostensalo, Joel
dc.contributor.authorSuhonen, Jouni
dc.date.accessioned2020-01-14T13:07:40Z
dc.date.available2020-01-14T13:07:40Z
dc.date.issued2020
dc.identifier.citationKostensalo, J., & Suhonen, J. (2020). Consistent large-scale shell-model analysis of the two-neutrino ββ and single β branchings in 48Ca and 96Zr. <i>Physics Letters B</i>, <i>802</i>, Article 135192. <a href="https://doi.org/10.1016/j.physletb.2019.135192" target="_blank">https://doi.org/10.1016/j.physletb.2019.135192</a>
dc.identifier.otherCONVID_33982677
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67295
dc.description.abstractTwo-neutrino double-beta-decay matrix elements M2ν and single beta-decay branching ratios were calculated for 48Ca and 96Zr in the interacting nuclear shell model using large single-particle valence spaces with well-tested two-body Hamiltonians. For 48Ca the matrix element M2ν=0.0511 is obtained, which is 5.5% smaller than the previously reported value of 0.0539. For 96Zr this work reports the first large-scale shell-model calculation of the nuclear matrix element, yielding a value M2ν=0.0747 with extreme single-state dominance. These matrix elements, combined with the available ββ-decay half-life data, yield effective values of the weak axial coupling which in turn are used to produce in a consistent way the β-decay branching ratios of (7.5±2.8) % for 48Ca and (18.4±0.09) % for 96Zr. These are larger than obtained in previous studies, implying that the detection of the β-decay branches could be possible in dedicated experiments sometime in the (near) future.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesPhysics Letters B
dc.rightsCC BY 4.0
dc.subject.otherdouble-beta decay
dc.subject.otheraxial-vector coupling
dc.subject.other48Ca
dc.subject.other96Zr
dc.subject.othershell model
dc.subject.othermatrix elements
dc.titleConsistent large-scale shell-model analysis of the two-neutrino ββ and single β branchings in 48Ca and 96Zr
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202001141248
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0370-2693
dc.relation.volume802
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 The Author(s)
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber318043
dc.subject.ysoydinfysiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14759
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.physletb.2019.135192
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis work has been partially supported by the Academy of Finland under the Academy project no. 318043. J.K. acknowledges the financial support from Jenny and Antti Wihuri Foundation.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0