Näytä suppeat kuvailutiedot

dc.contributor.authorWang, Ruijie
dc.contributor.authorWang, Meng
dc.contributor.authorLiu, Jun
dc.contributor.authorCochez, Michael
dc.contributor.authorDecker, Stefan
dc.date.accessioned2020-01-08T12:19:37Z
dc.date.available2020-01-08T12:19:37Z
dc.date.issued2020
dc.identifier.citationWang, R., Wang, M., Liu, J., Cochez, M., & Decker, S. (2020). Structured query construction via knowledge graph embedding. <i>Knowledge and Information Systems</i>, <i>62</i>(5), 1819-1846. <a href="https://doi.org/10.1007/s10115-019-01401-x" target="_blank">https://doi.org/10.1007/s10115-019-01401-x</a>
dc.identifier.otherCONVID_32876854
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67172
dc.description.abstractIn order to facilitate the accesses of general users to knowledge graphs, an increasing effort is being exerted to construct graph-structured queries of given natural language questions. At the core of the construction is to deduce the structure of the target query and determine the vertices/edges which constitute the query. Existing query construction methods rely on question understanding and conventional graph-based algorithms which lead to inefficient and degraded performances facing complex natural language questions over knowledge graphs with large scales. In this paper, we focus on this problem and propose a novel framework standing on recent knowledge graph embedding techniques. Our framework first encodes the underlying knowledge graph into a low-dimensional embedding space by leveraging generalized local knowledge graphs. Given a natural language question, the learned embedding representations of the knowledge graph are utilized to compute the query structure and assemble vertices/edges into the target query. Extensive experiments were conducted on the benchmark dataset, and the results demonstrate that our framework outperforms state-of-the-art baseline models regarding effectiveness and efficiency.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesKnowledge and Information Systems
dc.rightsIn Copyright
dc.subject.otherknowledge graph
dc.subject.otherquery construction
dc.subject.otherknowledge graph embedding
dc.subject.othernatural language question answering
dc.titleStructured query construction via knowledge graph embedding
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202001081099
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1819-1846
dc.relation.issn0219-1377
dc.relation.numberinseries5
dc.relation.volume62
dc.type.versionacceptedVersion
dc.rights.copyright© Springer-Verlag London Ltd., part of Springer Nature 2019
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysokyselykielet
dc.subject.ysotietomallit
dc.subject.ysoluonnollinen kieli
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p163
jyx.subject.urihttp://www.yso.fi/onto/yso/p25167
jyx.subject.urihttp://www.yso.fi/onto/yso/p26762
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/s10115-019-01401-x
jyx.fundinginformationThis work is supported by National Key Research and Development Program of China (No. 2018YFB1004500), National Natural Science Foundation of China (61532015, 61532004, 61672419, and 61672418), Innovative Research Group of the National Natural Science Foundation of China (61721002), Innovation Research Team of Ministry of Education (IRT_17R86), Project of China Knowledge Centre for Engineering Science and Technology, Science and Technology Planning Project of Guangdong Province (No. 2017A010101029), Teaching Reform Project of XJTU (No. 17ZX044), and China Scholarship Council (No. 201806280450).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright