Estimates of the Distance to Exact Solutions of the Stokes Problem with Slip and Leak Boundary Conditions
Neittaanmäki, P., Nokka, M., & Repin, S. (2019). Estimates of the Distance to Exact Solutions of the Stokes Problem with Slip and Leak Boundary Conditions. Journal of Mathematical Sciences, 242(2), 280-298. https://doi.org/10.1007/s10958-019-04477-6
Julkaistu sarjassa
Journal of Mathematical SciencesPäivämäärä
2019Tekijänoikeudet
© 2019 Springer Science+Business Media, LLC
We deduce a posteriori error estimates of functional type for the stationary Stokes problem with slip and leak boundary conditions. The derived error majorants do not contain mesh dependent constants and are valid for a wide class of energy admissible approximations that satisfy the Dirichlet boundary condition on a part of the boundary. Different forms of error majorants contain global constants associated with Poincaré type inequalities or the stability (LBB) condition for the Stokes problem or constants associated with subdomains (if a domain decomposition is applied). It is proved that the majorants are guaranteed and vanish if and only if the functions entering them coincide with the respective exact solutions.
Julkaisija
Springer New York LLCISSN Hae Julkaisufoorumista
1072-3374Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/33068992
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
No funding text.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
A two-phase problem with Robin conditions on the free boundary
Guarino Lo Bianco, Serena; La Manna, Domenico Angelo; Velichkov, Bozhidar (Les Éditions de l'École polytechnique, 2021)We study for the first time a two-phase free boundary problem in which the solution satisfies a Robin boundary condition. We consider the case in which the solution is continuous across the free boundary and we prove an ... -
Shape optimization for Stokes problem with threshold slip boundary conditions
Haslinger, Jaroslav; Mäkinen, Raino; Stebel, Jan (The American Institute of Mathematical Sciences, 2017)This paper deals with shape optimization of systems governed by the Stokes flow with threshold slip boundary conditions. The stability of solutions to the state problem with respect to a class of domains is studied. ... -
Fixed domain approaches in shape optimization problems with Dirichlet boundary conditions
Neittaanmäki, Pekka; Pennanen, Anssi; Tiba, Dan (IOP Publishing, 2009)Fixed domain methods have well-known advantages in the solution of variable domain problems including inverse interface problems. This paper examines two new control approaches to optimal design problems governed by general ... -
Optimal Control Problems in Nonsmooth Solid and Fluid Mechanics : Computational Aspects
Haslinger, Jaroslav; Mäkinen, Raino A. E. (Springer, 2023)The paper is devoted to numerical realization of nonsmooth optimal control problems in solid and fluid mechanics with special emphasis on contact shape optimization and parameter identification in fluid flow models. ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.