Näytä suppeat kuvailutiedot

dc.contributor.authorPandey, Gaurav
dc.contributor.authorWang, Shuaiqiang
dc.contributor.editorCzarnowski, Ireneusz
dc.contributor.editorHowlett, Robert J.
dc.contributor.editorJain, Lakhmi C.
dc.contributor.editorVlacic, Ljubo
dc.date.accessioned2019-12-17T13:32:38Z
dc.date.available2019-12-17T13:32:38Z
dc.date.issued2018
dc.identifier.citationPandey, G., & Wang, S. (2018). Listwise Recommendation Approach with Non-negative Matrix Factorization. In I. Czarnowski, R. J. Howlett, L. C. Jain, & L. Vlacic (Eds.), <i>KES-IDT 2018 : Proceedings of the 10th International KES Conference on Intelligent Decision Technologies</i> (pp. 22-32). Springer. Smart Innovation, Systems and Technologies, 97. <a href="https://doi.org/10.1007/978-3-319-92028-3_3" target="_blank">https://doi.org/10.1007/978-3-319-92028-3_3</a>
dc.identifier.otherCONVID_28131081
dc.identifier.otherTUTKAID_78082
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/66885
dc.description.abstractMatrix factorization (MF) is one of the most effective categories of recommendation algorithms, which makes predictions based on the user-item rating matrix. Nowadays many studies reveal that the ultimate goal of recommendations is to predict correct rankings of these unrated items. However, most of the pioneering efforts on ranking-oriented MF predict users’ item ranking based on the original rating matrix, which fails to explicitly present users’ preference ranking on items and thus might result in some accuracy loss. In this paper, we formulate a novel listwise user-ranking probability prediction problem for recommendations, that aims to utilize a user-ranking probability matrix to predict users’ possible rankings on all items. For this, we present LwRec, a novel listwise ranking-oriented matrix factorization algorithm. It aims to predict the missing values in the user-ranking probability matrix, aiming that each row of the final predicted matrix should have a probability distribution similar to the original one. Extensive offline experiments on two benchmark datasets against several state-of-the-art baselines demonstrate the effectiveness of our proposal.fi
dc.format.extent238
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofKES-IDT 2018 : Proceedings of the 10th International KES Conference on Intelligent Decision Technologies
dc.relation.ispartofseriesSmart Innovation, Systems and Technologies
dc.rightsIn Copyright
dc.subject.othercollaborative filtering
dc.subject.otherranking
dc.titleListwise Recommendation Approach with Non-negative Matrix Factorization
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-201912135254
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietojärjestelmätiedefi
dc.contributor.oppiaineInformation Systems Scienceen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.date.updated2019-12-13T10:15:22Z
dc.relation.isbn978-3-319-92027-6
dc.description.reviewstatuspeerReviewed
dc.format.pagerange22-32
dc.relation.issn2190-3018
dc.relation.numberinseries97
dc.type.versionacceptedVersion
dc.rights.copyright© Springer International Publishing AG, part of Springer Nature 2019
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceInternational KES Conference on Intelligent Decision Technologies
dc.subject.ysosuosittelujärjestelmät
dc.subject.ysoalgoritmit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p28483
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/978-3-319-92028-3_3


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright