How does serendipity affect diversity in recommender systems? A serendipity-oriented greedy algorithm
Kotkov, D., Veijalainen, J., & Wang, S. (2020). How does serendipity affect diversity in recommender systems? A serendipity-oriented greedy algorithm. Computing, 102(2), 393-411. https://doi.org/10.1007/s00607-018-0687-5
Julkaistu sarjassa
ComputingPäivämäärä
2020Tekijänoikeudet
© The Author(s) 2018
Most recommender systems suggest items that are popular among all users and similar to items a user usually consumes. As a result, the user receives recommendations that she/he is already familiar with or would find anyway, leading to low satisfaction. To overcome this problem, a recommender system should suggest novel, relevant and unexpected i.e., serendipitous items. In this paper, we propose a serendipity-oriented, reranking algorithm called a serendipity-oriented greedy (SOG) algorithm, which improves serendipity of recommendations through feature diversification and helps overcome the overspecialization problem. To evaluate our algorithm, we employed the only publicly available dataset containing user feedback regarding serendipity. We compared our SOG algorithm with topic diversification, popularity baseline, singular value decomposition, serendipitous personalized ranking and Zheng’s algorithms relying on the above dataset. SOG outperforms other algorithms in terms of serendipity and diversity. It also outperforms serendipity-oriented algorithms in terms of accuracy, but underperforms accuracy-oriented algorithms in terms of accuracy. We found that the increase of diversity can hurt accuracy and harm or improve serendipity depending on the size of diversity increase.
...
Julkaisija
Springer WienISSN Hae Julkaisufoorumista
0010-485XAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28775637
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
Open access funding provided by University of Jyväskylä (JYU). The research at the University of Jyväskylä was performed in the MineSocMed project, partially supported by the Academy of Finland, grant #268078 and the KAUTE Foundation.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A Serendipity-Oriented Greedy Algorithm for Recommendations
Kotkov, Denis; Veijalainen, Jari; Wang, Shuaiqiang (SCITEPRESS Science And Technology Publications, 2017)Most recommender systems suggest items to a user that are popular among all users and similar to items the user usually consumes. As a result, a user receives recommendations that she/he is already familiar with or would ... -
Serendipity in recommender systems
Kotkov, Denis (University of Jyväskylä, 2018)The number of goods and services (such as accommodation or music streaming) offered by e-commerce websites does not allow users to examine all the available options in a reasonable amount of time. Recommender systems are ... -
Challenges of Serendipity in Recommender Systems
Kotkov, Denis; Veijalainen, Jari; Wang, Shuaiqiang (SCITEPRESS, 2016)Most recommender systems suggest items similar to a user profile, which results in boring recommendations limited by user preferences indicated in the system. To overcome this problem, recommender systems should suggest ... -
Recommending Serendipitous Items using Transfer Learning
Pandey, Gaurav; Kotkov, Denis; Semenov, Alexander (ACM Press, 2018)Most recommender algorithms are designed to suggest relevant items, but suggesting these items does not always result in user satisfaction. Therefore, the efforts in recommender systems recently shifted towards serendipity, ... -
Improving Serendipity and Accuracy in Cross-Domain Recommender Systems
Kotkov, Denis; Wang, Shuaiqiang; Veijalainen, Jari (Springer International Publishing AG, 2017)Cross-domain recommender systems use information from source domains to improve recommendations in a target domain, where the term domain refers to a set of items that share attributes and/or user ratings. Most works ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.