Neural and mechanical function of flexor hallucis longus at different walking speeds and in different footwear
Ankle plantar flexor muscles make a major contribution to body propulsion in walking. Besides the triceps surae, deep ankle plantar flexors such as flexor hallucis longus (FHL) may also contribute to this. However, FHL function has not been extensively examined in vivo. Therefore, the aim of this thesis was to examine the effects of walking speed on FHL electromyography (EMG) activity, fascicle behaviour, and forces measured under the hallux in shod walking. Agreement between surface and intramuscular EMG was also tested in shod walking at different speeds for FHL, soleus, gastrocnemii, and tibialis anterior. Furthermore, intramuscular EMG activity of FHL and triceps surae was examined in different footwear at self-selected walking speed. As expected, FHL was highly active in the push-off phase of walking, similar to other plantar flexors. Increased walking speed was associated with higher FHL EMG activity and higher forces under the hallux, indicating an increase in the relative importance of FHL at faster walking speeds. FHL muscle fascicles operated at a near-constant length throughout the stance phase of slow walking, and shortened at faster speeds. This is similar to the fascicle mechanics of medial gastrocnemius in walking, with which FHL also shares similar architectural properties. When surface and intramuscular EMG methods were compared, there was often (~60% of all cases) poor agreement between methods for FHL, likely due to the challenge of minimising cross-talk in this muscle. Walking in shoes at preferred speed required higher plantar flexor muscle activity for body propulsion than walking in flip-flops or barefoot in most individuals, however individual variability was substantial. In shod walking, peak muscle activity occurred at the same relative time in the contact phase between participants. This may be due to the fact that shoes limit individual-specific natural foot and ankle function, imposing a restrictive motion pattern. This thesis provides in vivo evidence for the important role of FHL in walking. Using intramuscular EMG and ultrasonography, future studies should examine FHL function in individuals with Achilles tendinopathy or flatfoot, which are associated with altered FHL morphology, and perhaps also altered muscle function.
...
Publisher
Jyväskylän yliopistoISBN
978-951-39-8013-9ISSN Search the Publication Forum
2489-9003Contains publications
- Artikkeli I: Peter, A., Hegyi, A., Stenroth, L., Finni Juutinen, T., & Cronin, N. (2015). EMG and force production of the flexor hallucis longus muscle in isometric plantarflexion and the push-off phase of walking. Journal of Biomechanics, 48 (12), 3413-3419. DOI: 10.1016/j.jbiomech.2015.05.033. JYX: jyx.jyu.fi/handle/123456789/50179.
- Artikkeli II: Peter, A., Hegyi, A., Finni Juutinen, T., & Cronin, N. (2017). In vivo fascicle behavior of the flexor hallucis longus muscle at different walking speeds. Scandinavian Journal of Medicine and Science in Sports, 27 (12), 1716-1723. DOI: 10.1111/sms.12810. JYX: jyx.jyu.fi/handle/123456789/56173.
- Artikkeli III: Péter, A., Andersson, E., Hegyi, A., Finni, T., Tarassova, O., Cronin, N., Grundström, H., Arndt, A. (2019). Comparing Surface and Fine-wire Electromyography Activity of Lower Leg Muscles at Different Walking Speeds. Frontiers in Physiology, 10, 1283. DOI: 10.3389/fphys.2019.01283. JYX: jyx.jyu.fi/handle/123456789/65834.
- Artikkeli IV: Péter, A., Arndt, A., Hegyi, A., Finni, T., Andersson, E., Alkjær, T., Tarassova, O., Rönquist, G., Cronin, N. (2020). Effect of footwear on intramuscular EMG activity of plantar flexor muscles in walking. Journal of Electromyography and Kinesiology, 55, 102474. DOI: 10.1016/j.jelekin.2020.102474. JYX: jyx.jyu.fi/handle/123456789/71912.
Keywords
varpaat lihakset kävely nopeus jalkineet voima nilkat lihassolut lihasaktiivisuus biomekaniikka kävelynopeus reaktiovoima plantaarifleksio lihassolukimput koukistajalihakset isovarpaan pitkä koukistajalihas walking footwear plantar flexors flexor hallucis longus electromyography force fascicle bahaviour fascicle behaviour muscles walking (motion) muscle activity
Metadata
Show full item recordCollections
- JYU Dissertations [852]
- Väitöskirjat [3574]
License
Related items
Showing items with similar title or keywords.
-
Exploration of muscle–tendon biomechanics one year after Achilles tendon rupture and the compensatory role of flexor hallucis longus
Khair, Ra'ad M.; Stenroth, Lauri; Cronin, Neil J.; Ponkilainen, Ville; Reito, Aleksi; Finni, Taija (Elsevier, 2023)Achilles tendon (AT) rupture leads to long-term structural and functional impairments. Currently, the predictors of good recovery after rupture are poorly known. Thus, we aimed to explore the interconnections between ... -
Comparing Surface and Fine-wire Electromyography Activity of Lower Leg Muscles at Different Walking Speeds
Péter, Annamária; Andersson, Eva; Hegyi, András; Finni, Taija; Tarassova, Olga; Cronin, Neil; Grundström, Helen; Arndt, Anton (Frontiers Research Foundation, 2019)Ankle plantar flexor muscles are active in the stance phase of walking to propel the body forward. Increasing walking speed requires increased plantar flexor excitation, frequently assessed using surface electromyography ... -
Function of the flexor hallucis longus muscle : what do we know? = A flexor hallucis longus izom működése : mit tudunk róla?
Peter, Annamaria; Hegyi, Andras; Tihanyi, József; Cronin, Neil (Magyar Sport Háza, 2016)Flexor hallucis longus (FHL) muscle has several functions, including plantarflexion of the ankle, flexion of the big toe and support of the medial longitudinal arch. To date, only a few studies have used non-invasive methods ... -
Effect of footwear on intramuscular EMG activity of plantar flexor muscles in walking
Péter, Annamária; Arndt, Anton; Hegyi, András; Finni, Taija; Andersson, Eva; Alkjær, Tine; Tarassova,Olga; Rönquist, Gustaf; Cronin, Neil (Elsevier, 2020)One of the purposes of footwear is to assist locomotion, but some footwear types seem to restrict natural foot motion, which may affect the contribution of ankle plantar flexor muscles to propulsion. This study examined ... -
In vivo fascicle behavior of the flexor hallucis longus muscle at different walking speeds
Peter, Annamaria; Hegyi, Andras; Finni Juutinen, Taija; Cronin, Neil (Wiley-Blackwell, 2017)Ankle plantar flexor muscles support and propel the body in the stance phase of locomotion. Besides the triceps surae, flexor hallucis longus muscle (FHL) may also contribute to this role, but very few in vivo studies have ...