dc.contributor.author | Rüland, Angkana | |
dc.contributor.author | Salo, Mikko | |
dc.date.accessioned | 2019-12-11T11:58:20Z | |
dc.date.available | 2019-12-11T11:58:20Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Rüland, A., & Salo, M. (2020). Quantitative approximation properties for the fractional heat equation. <i>Mathematical Control and Related Fields</i>, <i>10</i>(1), 1-26. <a href="https://doi.org/10.3934/mcrf.2019027" target="_blank">https://doi.org/10.3934/mcrf.2019027</a> | |
dc.identifier.other | CONVID_33726665 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/66751 | |
dc.description.abstract | In this article we analyse quantitative approximation properties of a certain class of nonlocal equations: Viewing the fractional heat equation as a model problem, which involves both local and nonlocal pseudodifferential operators, we study quantitative approximation properties of solutions to it. First, relying on Runge type arguments, we give an alternative proof of certain qualitative approximation results from [9]. Using propagation of smallness arguments, we then provide bounds on the cost of approximate controllability and thus quantify the approximation properties of solutions to the fractional heat equation. Finally, we discuss generalizations of these results to a larger class of operators involving both local and nonlocal contributions. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | American Institute of Mathematical Sciences | |
dc.relation.ispartofseries | Mathematical Control and Related Fields | |
dc.rights | In Copyright | |
dc.subject.other | fractional parabolic Calderón problem | |
dc.subject.other | Runge approximation: weak unique continuation | |
dc.subject.other | cost of approximation: nonlocal operators | |
dc.title | Quantitative approximation properties for the fractional heat equation | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201912115216 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Inversio-ongelmien huippuyksikkö | fi |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Centre of Excellence in Inverse Problems | en |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1-26 | |
dc.relation.issn | 2156-8472 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 10 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2019 American Institute of Mathematical Sciences | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 284715 HY | |
dc.relation.grantnumber | 307023 | |
dc.relation.grantnumber | 307023 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/FP7/307023/EU//InvProbGeomPDE | |
dc.subject.yso | approksimointi | |
dc.subject.yso | osittaisdifferentiaaliyhtälöt | |
dc.subject.yso | inversio-ongelmat | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4982 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12392 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27912 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.3934/mcrf.2019027 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
jyx.fundingprogram | Centre of Excellence, AoF | en |
jyx.fundingprogram | FP7 (EU's 7th Framework Programme) | en |
jyx.fundingprogram | Huippuyksikkörahoitus, SA | fi |
jyx.fundingprogram | EU:n 7. puiteohjelma (FP7) | fi |
jyx.fundinginformation | Suomen Akatemia 284715; European Commission 307023 | |
dc.type.okm | A1 | |