Näytä suppeat kuvailutiedot

dc.contributor.authorRüland, Angkana
dc.contributor.authorSalo, Mikko
dc.date.accessioned2019-12-11T11:58:20Z
dc.date.available2019-12-11T11:58:20Z
dc.date.issued2020
dc.identifier.citationRüland, A., & Salo, M. (2020). Quantitative approximation properties for the fractional heat equation. <i>Mathematical Control and Related Fields</i>, <i>10</i>(1), 1-26. <a href="https://doi.org/10.3934/mcrf.2019027" target="_blank">https://doi.org/10.3934/mcrf.2019027</a>
dc.identifier.otherCONVID_33726665
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/66751
dc.description.abstractIn this article we analyse quantitative approximation properties of a certain class of nonlocal equations: Viewing the fractional heat equation as a model problem, which involves both local and nonlocal pseudodifferential operators, we study quantitative approximation properties of solutions to it. First, relying on Runge type arguments, we give an alternative proof of certain qualitative approximation results from [9]. Using propagation of smallness arguments, we then provide bounds on the cost of approximate controllability and thus quantify the approximation properties of solutions to the fractional heat equation. Finally, we discuss generalizations of these results to a larger class of operators involving both local and nonlocal contributions.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Institute of Mathematical Sciences
dc.relation.ispartofseriesMathematical Control and Related Fields
dc.rightsIn Copyright
dc.subject.otherfractional parabolic Calderón problem
dc.subject.otherRunge approximation: weak unique continuation
dc.subject.othercost of approximation: nonlocal operators
dc.titleQuantitative approximation properties for the fractional heat equation
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201912115216
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineInversio-ongelmien huippuyksikköfi
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineCentre of Excellence in Inverse Problemsen
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1-26
dc.relation.issn2156-8472
dc.relation.numberinseries1
dc.relation.volume10
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 American Institute of Mathematical Sciences
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber284715 HY
dc.relation.grantnumber307023
dc.relation.grantnumber307023
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/307023/EU//InvProbGeomPDE
dc.subject.ysoapproksimointi
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.subject.ysoinversio-ongelmat
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p4982
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
jyx.subject.urihttp://www.yso.fi/onto/yso/p27912
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.3934/mcrf.2019027
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramCentre of Excellence, AoFen
jyx.fundingprogramFP7 (EU's 7th Framework Programme)en
jyx.fundingprogramHuippuyksikkörahoitus, SAfi
jyx.fundingprogramEU:n 7. puiteohjelma (FP7)fi
jyx.fundinginformationSuomen Akatemia 284715; European Commission 307023
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright