Evaluating responses to temperature during pre-metamorphosis and carry-over effects at post-metamorphosis in the wood tiger moth (Arctia plantaginis)
Galarza, J. A., Dhaygude, K., Ghaedi, B., Suisto, K., Valkonen, J., & Mappes, J. (2019). Evaluating responses to temperature during pre-metamorphosis and carry-over effects at post-metamorphosis in the wood tiger moth (Arctia plantaginis). Philosophical Transactions of the Royal Society B : Biological Sciences, 374(1783), Article 20190295. https://doi.org/10.1098/rstb.2019.0295
Julkaistu sarjassa
Philosophical Transactions of the Royal Society B : Biological SciencesTekijät
Päivämäärä
2019Oppiaine
Ekologia ja evoluutiobiologiaBiologisten vuorovaikutusten huippututkimusyksikköEcology and Evolutionary BiologyCentre of Excellence in Biological Interactions ResearchTekijänoikeudet
© 2019 The Authors
Insect metamorphosis is one of the most recognized processes delimiting transitions between phenotypes. It has been traditionally postulated as an adaptive process decoupling traits between life stages, allowing evolutionary independence of pre- and post-metamorphic phenotypes. However, the degree of autonomy between these life stages varies depending on the species and has not been studied in detail over multiple traits simultaneously. Here, we reared full-sib larvae of the warningly coloured wood tiger moth (Arctia plantaginis) in different temperatures and examined their responses for phenotypic (melanization change, number of moults), gene expression (RNA-seq and qPCR of candidate genes for melanization and flight performance) and life-histories traits (pupal weight, and larval and pupal ages). In the emerging adults, we examined their phenotypes (melanization and size) and compared them at three condition proxies: heat absorption (ability to engage flight), flight metabolism (ability to sustain flight) and overall flight performance. We found that some larval responses, as evidenced by gene expression and change in melanization, did not have an effect on the adult (i.e. size and wing melanization), whereas other adult traits such as heat absorption, body melanization and flight performance were found to be impacted by rearing temperature. Adults reared at high temperature showed higher resting metabolic rate, lower body melanization, faster heating rate, lower body temperature at take-off and inferior flight performance than cold-reared adults. Thus, our results did not unambiguously support the environment-matching hypothesis. Our results illustrate the importance of assessing multiple traits across life stages as these may only be partly decoupled by metamorphosis.
...
Julkaisija
The Royal Society PublishingISSN Hae Julkaisufoorumista
0962-8436Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/32498419
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Huippuyksikkörahoitus, SALisätietoja rahoituksesta
This work was funded by the Academy of Finland via the Centre of Excellence in Biological Interactions at the University of Jyväskylä, Finland.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The effects of sex pheromone on female attractiveness and its role in maintaining color polymorphism in Arctia plantaginis
Selenius, Eetu (2021)Natural and sexual selection can cause opposing selection pressures, which might help explain the maintenance of color polymorphism. It is a particularly puzzling phenomenon in aposematic species, such as the wood tiger ... -
Evolution of signal diversity : predator-prey interactions and the maintenance of warning colour polymorphism in the wood tiger moth Arctia plantaginis
Rönkä, Katja (University of Jyväskylä, 2017)Aposematic organisms avoid predation by advertising defences with warning signals. The theory of aposematism predicts warning signal uniformity, yet variation in warning coloration is widespread. The chemically defended ... -
A haplotype-resolved, de novo genome assembly for the wood tiger moth (Arctia plantaginis) through trio binning
Yen, Eugenie C.; McCarthy, Shane A.; Galarza, Juan A.; Generalovic, Tomas N.; Pelan, Sarah; Nguyen, Petr; Meier, Joana I.; Warren, Ian A.; Mappes, Johanna; Durbin, Richard; Jiggins, Chris D. (Biomed Central, 2020)Background Diploid genome assembly is typically impeded by heterozygosity because it introduces errors when haplotypes are collapsed into a consensus sequence. Trio binning offers an innovative solution that exploits ... -
Defense against predators incurs high reproductive costs for the aposematic moth Arctia plantaginis
Lindstedt, Carita; Suisto, Kaisa; Burdfield-Steel, Emily; Winters, Anne E.; Mappes, Johanna (Oxford University Press, 2020)To understand how variation in warning displays evolves and is maintained, we need to understand not only how perceivers of these traits select color and toxicity but also the sources of the genetic and phenotypic variation ... -
The complete mitochondrial genome of the wood tiger moth (Arctia plantaginis) and phylogenetic analyses within Arctiinae
Galarza, Juan A.; Mappes, Johanna (Taylor & Francis, 2021)We report the assembly and annotation of the complete mitochondrial genome of the warningly-coloured wood tiger moth (Arctia plantaginis) and investigate its phylogenetic position within Arctiinae. The A.plantaginis ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.