Show simple item record

dc.contributor.authorMajola, S. N. T.
dc.contributor.authorShi, Z.
dc.contributor.authorSong, B. Y.
dc.contributor.authorLi, Z. P.
dc.contributor.authorZhang, S. Q.
dc.contributor.authorBark, R. A.
dc.contributor.authorSharpey-Schafer, J. F.
dc.contributor.authorAschman, D. G.
dc.contributor.authorBvumbi, S. P.
dc.contributor.authorBucher, T. D.
dc.contributor.authorCullen, D. M.
dc.contributor.authorDinoko, T. S.
dc.contributor.authorEaston, J. E.
dc.contributor.authorErasmus, N.
dc.contributor.authorGreenlees, P. T.
dc.contributor.authorHartley, D. J.
dc.contributor.authorHirvonen, J.
dc.contributor.authorKorichi, A.
dc.contributor.authorJakobsson, U.
dc.contributor.authorJones, P.
dc.contributor.authorJongile, S.
dc.contributor.authorJulin, R.
dc.contributor.authorJuutinen, S.
dc.contributor.authorKetelhut, S.
dc.contributor.authorKheswa, B. V.
dc.contributor.authorKhumalo, N. A.
dc.contributor.authorLawrie, E. A.
dc.contributor.authorLawrie, J. J.
dc.contributor.authorLindsay, R.
dc.contributor.authorMadiba, T. E.
dc.contributor.authorMakhathini, L.
dc.contributor.authorMaliage, S. M.
dc.contributor.authorMaqabuka, B.
dc.contributor.authorMalatji, K. L.
dc.contributor.authorMasiteng, P. L.
dc.contributor.authorMashita, P. I.
dc.contributor.authorMdletshe, L.
dc.contributor.authorMinkova, A.
dc.contributor.authorMsebi, L.
dc.contributor.authorMullins, S. M.
dc.contributor.authorNdayishimye, J.
dc.contributor.authorNegi, D.
dc.contributor.authorNetshiya, A.
dc.contributor.authorNewman, R.
dc.contributor.authorNtshangase, S. S.
dc.contributor.authorNtshodu, R.
dc.contributor.authorNyakó, B. M.
dc.contributor.authorPapka, P.
dc.contributor.authorPeura, P.
dc.contributor.authorRahkila, P.
dc.contributor.authorRiedinger, L. L.
dc.contributor.authorRiley, M. A.
dc.contributor.authorRoux, D. G.
dc.contributor.authorRuotsalainen, P.
dc.contributor.authorSaren, J. J.
dc.contributor.authorScholey, C.
dc.contributor.authorShirinda, O.
dc.contributor.authorSithole, M. A.
dc.contributor.authorSorri, J.
dc.contributor.authorStankiewicz, M.
dc.contributor.authorStolze, S.
dc.contributor.authorTimár, J.
dc.contributor.authorUusitalo, J.
dc.contributor.authorVymers, P. A.
dc.contributor.authorWiedeking, M.
dc.contributor.authorZimba, G. L.
dc.date.accessioned2019-11-05T13:18:45Z
dc.date.available2019-11-05T13:18:45Z
dc.date.issued2019
dc.identifier.citationMajola, S. N. T.; Shi, Z.; Song, B. Y.; Li, Z. P.; Zhang, S. Q.; Bark, R. A.; Sharpey-Schafer, J. F.; Aschman, D. G.; Bvumbi, S. P.; Bucher, T. D.; Cullen, D. M.; Dinoko, T. S.; Easton, J. E. et al. (2019). β and γ bands in N = 88, 90, and 92 isotones investigated with a five-dimensional collective Hamiltonian based on covariant density functional theory : Vibrations, shape coexistence, and superdeformation. Physical Review C, 100 (4), 044324. DOI: 10.1103/PhysRevC.100.044324
dc.identifier.otherCONVID_33393606
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/66171
dc.description.abstractA comprehensive systematic study is made for the collective β and γ bands in even-even isotopes with neutron numbers N=88 to 92 and proton numbers Z=62(Sm) to 70 (Yb). Data, including excitation energies, B(E0) and B(E2) values, and branching ratios from previously published experiments are collated with new data presented for the first time in this study. The experimental data are compared to calculations using a five-dimensional collective Hamiltonian (5DCH) based on the covariant density functional theory (CDFT). A realistic potential in the quadrupole shape parameters V(β,γ) is determined from potential energy surfaces (PES) calculated using the CDFT. The parameters of the 5DCH are fixed and contained within the CDFT. Overall, a satisfactory agreement is found between the data and the calculations. In line with the energy staggering S(I) of the levels in the 2γ+ bands, the potential energy surfaces of the CDFT calculations indicate γ-soft shapes in the N=88 nuclides, which become γ rigid for N=90 and N=92. The nature of the 02+ bands changes with atomic number. In the isotopes of Sm to Dy, they can be understood as β vibrations, but in the Er and Yb isotopes the 02+ bands have wave functions with large components in a triaxial superdeformed minimum. In the vicinity of 152Sm, the present calculations predict a soft potential in the β direction but do not find two coexisting minima. This is reminiscent of 152Sm exhibiting an X(5) behavior. The model also predicts that the 03+ bands are of two-phonon nature, having an energy twice that of the 02+ band. This is in contradiction with the data and implies that other excitation modes must be invoked to explain their origin.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review C
dc.rightsIn Copyright
dc.subject.othercollective levels
dc.subject.othercollective models
dc.subject.otherelectromagnetic transitions
dc.subject.otherlow and intermediate energy heavy-ion reactions
dc.subject.othernuclear density functional theory
dc.subject.othernuclear spin and parity
dc.subject.othernucleon induced nuclear reactions
dc.titleβ and γ bands in N = 88, 90, and 92 isotones investigated with a five-dimensional collective Hamiltonian based on covariant density functional theory : Vibrations, shape coexistence, and superdeformation
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201911054724
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.relation.issn2469-9985
dc.relation.numberinseries4
dc.relation.volume100
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 American Physical Society
dc.rights.accesslevelopenAccessfi
dc.subject.ysoydinfysiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14759
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1103/PhysRevC.100.044324
jyx.fundinginformationThis work is supported by the National Research Foundation of South Africa under grants (No. 109711, No. 92791, No. 106012, No. 92792, No. 90741, No. 109134, No. 96829, No. 93531, and No. 116666); the National Natural Science Foundation of China under grants (No. 11461141002, No. 11375015, No. 11875225, and No. 11875075); the US National Science Foundation under Grants No. PHY-1401574 (USNA) and No. PHY-0754674 (FSU), and No. PHY-1502092 (USNA); the National Research, Development and Innovation Fund of Hungary under Grant No. K128947; and the European Regional Development Fund, under grant (No. GINOP-2.3.3-15-2016-00034). JYFL research is supported by the Academy of Finland under the Finnish Centre of Excellence Programme 2006-2011, Contract No. 213503. The authors also acknowledge the support of GAMMAPOOL for the loan of the JUROGAM detectors.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright