Show simple item record

dc.contributor.authorMalola, Sami
dc.contributor.authorNieminen, Paavo
dc.contributor.authorPihlajamäki, Antti
dc.contributor.authorHämäläinen, Joonas
dc.contributor.authorKärkkäinen, Tommi
dc.contributor.authorHäkkinen, Hannu
dc.date.accessioned2019-09-09T05:49:11Z
dc.date.available2019-09-09T05:49:11Z
dc.date.issued2019
dc.identifier.citationMalola, S., Nieminen, P., Pihlajamäki, A., Hämäläinen, J., Kärkkäinen, T., & Häkkinen, H. (2019). A method for structure prediction of metal-ligand interfaces of hybrid nanoparticles. <i>Nature Communications</i>, <i>10</i>, Article 3973. <a href="https://doi.org/10.1038/s41467-019-12031-w" target="_blank">https://doi.org/10.1038/s41467-019-12031-w</a>
dc.identifier.otherCONVID_32731230
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/65458
dc.description.abstractHybrid metal nanoparticles, consisting of a nano-crystalline metal core and a protecting shell of organic ligand molecules, have applications in diverse areas such as biolabeling, catalysis, nanomedicine, and solar energy. Despite a rapidly growing database of experimentally determined atom-precise nanoparticle structures and their properties, there has been no successful, systematic way to predict the atomistic structure of the metal-ligand interface. Here, we devise and validate a general method to predict the structure of the metal-ligand interface of ligand-stabilized gold and silver nanoparticles, based on information about local chemical environments of atoms in experimental data. In addition to predicting realistic interface structures, our method is useful for investigations on the steric effects at the metal-ligand interface, as well as for predicting isomers and intermediate structures induced by thermal dynamics or interactions with the environment. Our method is applicable to other hybrid nanomaterials once a suitable set of reference structures is available.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.ispartofseriesNature Communications
dc.rightsCC BY 4.0
dc.titleA method for structure prediction of metal-ligand interfaces of hybrid nanoparticles
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201909094057
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2041-1723
dc.relation.volume10
dc.type.versionpublishedVersion
dc.rights.copyright© The Authors, 2019
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber315549
dc.relation.grantnumber311877
dc.relation.grantnumber315550
dc.subject.ysonanohiukkaset
dc.subject.ysolaskennallinen kemia
dc.subject.ysoligandit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p23451
jyx.subject.urihttp://www.yso.fi/onto/yso/p23053
jyx.subject.urihttp://www.yso.fi/onto/yso/p24741
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1038/s41467-019-12031-w
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramAkatemiaohjelma, SAfi
jyx.fundingprogramProfilointi, SAfi
jyx.fundingprogramAkatemiaohjelma, SAfi
jyx.fundingprogramAcademy Programme, AoFen
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramAcademy Programme, AoFen
jyx.fundinginformationThis work was supported by Academy of Finland through the AIPSE research program, grants 315549 (H.H.), 315550 (T.K.) and 311877 (T.K.), and through H.H.’s Academy Professorship. The computations were done at the Nanoscience Center (NSC) of University of Jyväskylä, at the CSC supercomputing center in Finland and as part of a PRACE project in the Barcelona Supercomputing Center.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0