A method for structure prediction of metal-ligand interfaces of hybrid nanoparticles
Malola, S., Nieminen, P., Pihlajamäki, A., Hämäläinen, J., Kärkkäinen, T., & Häkkinen, H. (2019). A method for structure prediction of metal-ligand interfaces of hybrid nanoparticles. Nature Communications, 10, Article 3973. https://doi.org/10.1038/s41467-019-12031-w
Julkaistu sarjassa
Nature CommunicationsTekijät
Päivämäärä
2019Tekijänoikeudet
© The Authors, 2019
Hybrid metal nanoparticles, consisting of a nano-crystalline metal core and a protecting shell of organic ligand molecules, have applications in diverse areas such as biolabeling, catalysis, nanomedicine, and solar energy. Despite a rapidly growing database of experimentally determined atom-precise nanoparticle structures and their properties, there has been no successful, systematic way to predict the atomistic structure of the metal-ligand interface. Here, we devise and validate a general method to predict the structure of the metal-ligand interface of ligand-stabilized gold and silver nanoparticles, based on information about local chemical environments of atoms in experimental data. In addition to predicting realistic interface structures, our method is useful for investigations on the steric effects at the metal-ligand interface, as well as for predicting isomers and intermediate structures induced by thermal dynamics or interactions with the environment. Our method is applicable to other hybrid nanomaterials once a suitable set of reference structures is available.
...
Julkaisija
Nature Publishing GroupISSN Hae Julkaisufoorumista
2041-1723Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/32731230
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiaohjelma, SA; Profilointi, SALisätietoja rahoituksesta
This work was supported by Academy of Finland through the AIPSE research program, grants 315549 (H.H.), 315550 (T.K.) and 311877 (T.K.), and through H.H.’s Academy Professorship. The computations were done at the Nanoscience Center (NSC) of University of Jyväskylä, at the CSC supercomputing center in Finland and as part of a PRACE project in the Barcelona Supercomputing Center.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Magnetically induced currents and aromaticity in ligand-stabilized Au and AuPt superatoms
López-Estrada, Omar; Zuniga-Gutierrez, Bernardo; Selenius, Elli; Malola, Sami; Häkkinen, Hannu (Nature Publishing Group, 2021)Understanding magnetically induced currents (MICs) in aromatic or metallic nanostructures is crucial for interpreting local magnetic shielding and NMR data. Direct measurements of the induced currents have been successful ... -
Influence of a Cu–zirconia interface structure on CO2 adsorption and activation
Gell, Lars; Lempelto, Aku; Kiljunen, Toni; Honkala, Karoliina (American Institute of Physics, 2021)CO2 adsorption and activation on a catalyst are key elementary steps for CO2 conversion to various valuable products. In the present computational study, we screened different Cu–ZrO2 interface structures and analyzed the ... -
Elucidating the ligand shell structure and dynamics of Au683MBA32 gold nanocluster using molecular dynamics simulations
Lautala, Saara (2017)Synthesising novel gold nanoparticles and -clusters can be often easier than characterising them, and after experimental analysis many options for the possible molecular formula of the cluster may remain as equally valid ... -
Modeling the atomic and electronic structure of nanoparticle-ligand interfaces
Mäkinen, Ville (University of Jyväskylä, 2013) -
Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle
Salorinne, Kirsi; Malola, Sami; Wong, O. Andrea; Rithner, Christopher D.; Chen, Xi; Ackerson, Christopher J.; Häkkinen, Hannu (Nature Publishing Group, 2016)Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.