dc.contributor.author | Yan, Rui | |
dc.contributor.author | Li, Fan | |
dc.contributor.author | Wang, Xiaoyu | |
dc.contributor.author | Ristaniemi, Tapani | |
dc.contributor.author | Cong, Fengyu | |
dc.contributor.editor | Obaidat, Mohammad | |
dc.contributor.editor | Callegari, Christian | |
dc.contributor.editor | van Sinderen, Marten | |
dc.contributor.editor | Novais, Paulo | |
dc.contributor.editor | Sarigiannidis, Panagiotis | |
dc.contributor.editor | Battiato, Sebastiano | |
dc.contributor.editor | Serrano Sánchez de León, Ángel | |
dc.contributor.editor | Lorenz, Pascal | |
dc.contributor.editor | Davoli, Franco | |
dc.date.accessioned | 2019-08-29T09:02:03Z | |
dc.date.available | 2019-08-29T09:02:03Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Yan, R., Li, F., Wang, X., Ristaniemi, T., & Cong, F. (2019). An Automatic Sleep Scoring Toolbox : Multi-modality of Polysomnography Signals’ Processing. In M. Obaidat, C. Callegari, M. van Sinderen, P. Novais, P. Sarigiannidis, S. Battiato, Á. Serrano Sánchez de León, P. Lorenz, & F. Davoli (Eds.), <i>ICETE 2019 : Proceedings of the 16th International Joint Conference on e-Business and Telecommunications, Volume 1: DCNET, ICE-B, OPTICS, SIGMAP and WINSYS</i> (pp. 301-309). SCITEPRESS Science And Technology Publications. <a href="https://doi.org/10.5220/0007925503010309" target="_blank">https://doi.org/10.5220/0007925503010309</a> | |
dc.identifier.other | CONVID_32289916 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/65363 | |
dc.description.abstract | Sleep scoring is a fundamental but time-consuming process in any sleep laboratory. To speed up the process of sleep scoring without compromising accuracy, this paper develops an automatic sleep scoring toolbox with the capability of multi-signal processing. It allows the user to choose signal types and the number of target classes. Then, an automatic process containing signal pre-processing, feature extraction, classifier training (or prediction) and result correction will be performed. Finally, the application interface displays predicted sleep structure, related sleep parameters and the sleep quality index for reference. To improve the identification accuracy of minority stages, a layer-wise classification strategy is proposed according to the signal characteristics of sleep stages. The context of the current stage is taken into consideration in the correction phase by employing a Hidden Markov Model to study the transition rules of sleep stages in the training dataset. These transition rules will be used for logic classification results. The performance of proposed toolbox has been tested on 100 subjects with an average accuracy of 85.76%. The proposed automatic scoring toolbox would alleviate the burden of the physicians, speed up sleep scoring, and expedite sleep research. | en |
dc.format.extent | 386 | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | SCITEPRESS Science And Technology Publications | |
dc.relation.ispartof | ICETE 2019 : Proceedings of the 16th International Joint Conference on e-Business and Telecommunications, Volume 1: DCNET, ICE-B, OPTICS, SIGMAP and WINSYS | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | polysomnography | |
dc.subject.other | multi-modality analysis | |
dc.subject.other | MATLAB toolbox | |
dc.subject.other | automatic sleep scoring | |
dc.title | An Automatic Sleep Scoring Toolbox : Multi-modality of Polysomnography Signals’ Processing | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-201908293969 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-989-758-378-0 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 301-309 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2019 by SCITEPRESS | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | International Conference on Signal Processing and Multimedia Applications | |
dc.subject.yso | uni (lepotila) | |
dc.subject.yso | MATLAB | |
dc.subject.yso | signaalianalyysi | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8299 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12929 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26805 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.5220/0007925503010309 | |
jyx.fundinginformation | This work was supported by the scholarships from China Scholarship Council (Nos. 201606060227). | |
dc.type.okm | A4 | |