dc.contributor.author | Harrach, Bastian | |
dc.contributor.author | Pohjola, Valter | |
dc.contributor.author | Salo, Mikko | |
dc.date.accessioned | 2019-08-01T10:34:57Z | |
dc.date.available | 2019-08-01T10:34:57Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Harrach, B., Pohjola, V., & Salo, M. (2019). Dimension Bounds in Monotonicity Methods for the Helmholtz Equation. <i>SIAM Journal on Mathematical Analysis</i>, <i>51</i>(4), 2995-3019. <a href="https://doi.org/10.1137/19M1240708" target="_blank">https://doi.org/10.1137/19M1240708</a> | |
dc.identifier.other | CONVID_32199156 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/65184 | |
dc.description.abstract | The article [B. Harrach, V. Pohjola, and M. Salo, Anal. PDE] established a monotonicity inequality for the Helmholtz equation and presented applications to shape detection and local uniqueness in inverse boundary problems. The monotonicity inequality states that if two scattering coefficients satisfy $q_1 \leq q_2$, then the corresponding Neumann-to-Dirichlet operators satisfy $\Lambda(q_1) \leq \Lambda(q_2)$ up to a finite-dimensional subspace. Here we improve the bounds for the dimension of this space. In particular, if $q_1$ and $q_2$ have the same number of positive Neumann eigenvalues, then the finite-dimensional space is trivial. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Society for Industrial and Applied Mathematics | |
dc.relation.ispartofseries | SIAM Journal on Mathematical Analysis | |
dc.rights | In Copyright | |
dc.subject.other | inverse problems | |
dc.subject.other | Helmholtz equation | |
dc.subject.other | montonicity method | |
dc.title | Dimension Bounds in Monotonicity Methods for the Helmholtz Equation | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201908013746 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 2995-3019 | |
dc.relation.issn | 0036-1410 | |
dc.relation.numberinseries | 4 | |
dc.relation.volume | 51 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2019 Society for Industrial and Applied Mathematics | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 312121 | |
dc.relation.grantnumber | 770924 | |
dc.relation.grantnumber | 770924 | |
dc.relation.grantnumber | 309963 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/770924/EU//IPTheoryUnified | |
dc.subject.yso | inversio-ongelmat | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27912 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1137/19M1240708 | |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | Research Council of Finland | en |
jyx.fundingprogram | Huippuyksikkörahoitus, SA | fi |
jyx.fundingprogram | ERC Consolidator Grant | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Centre of Excellence, AoF | en |
jyx.fundingprogram | ERC Consolidator Grant | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundinginformation | The work of the third author was supported by the Academy of Finland (Centre of Excellence in Inverse modeling and Imaging) grants 312121, 309963, and by the European Research Council under Horizon 2020 grant ERC CoG 770924 | |
dc.type.okm | A1 | |