Dangers of Demosaicing : Confusion From Correlation
Eskelinen, M., & Hämäläinen, J. (2019). Dangers of Demosaicing : Confusion From Correlation. In WHISPERS 2018 : 9th Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing. IEEE. https://doi.org/10.1109/WHISPERS.2018.8747204
Date
2019Copyright
© IEEE, 2019.
Images from colour sensors using Bayer filter arrays require demosaicing before viewing or further analysis. Advanced demosaicing methods use empirical knowledge of
inter-channel correlations to reduce interpolation artefacts in
the resulting images. These inter-channel correlations are
however different for standard RGB cameras and hyperspectral imagers using colour sensors with added narrow-band
spectral filtering.
We study the effects of conventional demosaicing methods on hyperspectral images with a dataset originally collected without a colour filter array. We find that using advanced methods instead of bilinear interpolation results in an
overall increase of 9–14 % in absolute error and a decrease
of 1–3 % in PSNR, but also observed a decrease in MSE of
11–13 %.
For the corresponding RGB images, the advanced methods improved fidelity as expected. The results also demonstrate that the reconstruction methods that take advantage of
correlation transport noise present in a single component to
other reconstructed layers.
...
Publisher
IEEEParent publication ISBN
978-1-7281-1581-8Conference
Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote SensingIs part of publication
WHISPERS 2018 : 9th Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote SensingISSN Search the Publication Forum
2158-6276Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/32243924
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Revealing Hidden Art : Authenticating And Unveiling Neolithic Rock Paintings Through Advanced Hyperspectral Imaging Techniques
Raita-Hakola, Anna-Maria; Rahkonen, Samuli; Pölönen, Ilkka (IEEE, 2024)Finnish rock paintings from Neolithic Stone Age are located on open-air bedrock panels, being subject to the effects biotic and climatic influences. Consequently, these paintings have predominantly faded and are challenging ... -
Piecewise anomaly detection using minimal learning machine for hyperspectral images
Raita-Hakola, A.-M.; Pölönen, I. (Copernicus Publications, 2021)Hyperspectral imaging, with its applications, offers promising tools for remote sensing and Earth observation. Recent development has increased the quality of the sensors. At the same time, the prices of the sensors are ... -
Parameter Optimization for Low-Rank Matrix Recovery in Hyperspectral Imaging
Wolfmayr, Monika (MDPI AG, 2023)An approach to parameter optimization for the low-rank matrix recovery method in hyperspectral imaging is discussed. We formulate an optimization problem with respect to the initial parameters of the low-rank matrix recovery ... -
Hyperspectral imaging of asteroids using an FPI-based sensor
Lind, Leevi; Laamanen, Hannu; Pölönen, Ilkka (SPIE, 2021)The compositions of asteroids are of interest for the planetary sciences, mining, and planetary defense. The main method for evaluating these compositions is reflectance spectroscopy. Spectroscopic measurements performed ... -
Non-invasive monitoring of microalgae cultivations using hyperspectral imager
Pääkkönen, Salli; Pölönen, Ilkka; Raita-Hakola, Anna-Maria; Carneiro, Mariana; Cardoso, Helena; Mauricio, Dinis; Rodrigues, Alexandre Miguel Cavaco; Salmi, Pauliina (Springer Nature, 2024)High expectations are placed on microalgae as a sustainable source of valuable biomolecules. Robust methods to control microalgae cultivation processes are needed to enhance their efficiency and, thereafter, increase the ...