Näytä suppeat kuvailutiedot

dc.contributor.authorKäenmäki, Antti
dc.contributor.authorLehrbäck, Juha
dc.date.accessioned2019-07-02T09:41:38Z
dc.date.available2019-07-02T09:41:38Z
dc.date.issued2017
dc.identifier.citationKäenmäki, A., & Lehrbäck, J. (2017). Measures with predetermined regularity and inhomogeneous self-similar sets. <i>Arkiv för Matematik</i>, <i>55</i>(1), 165-184. <a href="https://doi.org/10.4310/ARKIV.2017.v55.n1.a8" target="_blank">https://doi.org/10.4310/ARKIV.2017.v55.n1.a8</a>
dc.identifier.otherCONVID_27251499
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/64958
dc.description.abstractWe show that if X is a uniformly perfect complete metric space satisfying the finite doubling property, then there exists a fully supported measure with lower regularity dimension as close to the lower dimension of X as we wish. Furthermore, we show that, under the condensation open set condition, the lower dimension of an inhomogeneous self-similar set EC coincides with the lower dimension of the condensation set C, while the Assouad dimension of EC is the maximum of the Assouad dimensions of the corresponding self-similar set E and the condensation set C. If the Assouad dimension of C is strictly smaller than the Assouad dimension of E, then the upper regularity dimension of any measure supported on EC is strictly larger than the Assouad dimension of EC. Surprisingly, the corresponding statement for the lower regularity dimension fails.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInternational Press
dc.relation.ispartofseriesArkiv för Matematik
dc.rightsIn Copyright
dc.subject.otherdoubling metric space
dc.subject.otheruniform perfectness
dc.subject.otherAssouad dimension
dc.subject.otherlower dimension
dc.subject.otherinhomogeneous self-similar set
dc.titleMeasures with predetermined regularity and inhomogeneous self-similar sets
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201906253432
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-06-25T12:15:15Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange165-184
dc.relation.issn0004-2080
dc.relation.numberinseries1
dc.relation.volume55
dc.type.versionpublishedVersion
dc.rights.copyright© 2017 by Institut Mittag-Leffler.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.format.contentfulltext
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.4310/ARKIV.2017.v55.n1.a8
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright