dc.contributor.author | Chang, Jin Hyun | |
dc.contributor.author | Kleiven, David | |
dc.contributor.author | Melander, Marko | |
dc.contributor.author | Akola, Jaakko | |
dc.contributor.author | Garcia-Lastra, Juan Maria | |
dc.contributor.author | Vegge, Tejs | |
dc.date.accessioned | 2019-06-10T09:29:06Z | |
dc.date.available | 2019-06-10T09:29:06Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Chang, J. H., Kleiven, D., Melander, M., Akola, J., Garcia-Lastra, J. M., & Vegge, T. (2019). CLEASE : A versatile and user-friendly implementation of Cluster Expansion method. <i>Journal of Physics: Condensed Matter</i>, <i>31</i>(32), Article 325901. <a href="https://doi.org/10.1088/1361-648X/ab1bbc" target="_blank">https://doi.org/10.1088/1361-648X/ab1bbc</a> | |
dc.identifier.other | CONVID_30544426 | |
dc.identifier.other | TUTKAID_81297 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/64476 | |
dc.description.abstract | Materials exhibiting a substitutional disorder such as multicomponent alloys and mixed metal
oxides/oxyfluorides are of great importance in many scientific and technological sectors.
Disordered materials constitute an overwhelmingly large configurational space, which makes it
practically impossible to be explored manually using first-principles calculations such as density
functional theory due to the high computational costs. Consequently, the use of methods such as
cluster expansion (CE) is vital in enhancing our understanding of the disordered materials. CE
dramatically reduces the computational cost by mapping the first-principles calculation results on
to a Hamiltonian which is much faster to evaluate. In this work, we present our implementation
of the CE method, which is integrated as a part of the atomic simulation environment (ASE)
open-source package. The versatile and user-friendly code automates the complex set up and
construction procedure of CE while giving the users the flexibility to tweak the settings and
to import their own structures and previous calculation results. Recent advancements such as
regularization techniques from machine learning are implemented in the developed code. The
code allows the users to construct CE on any bulk lattice structure, which makes it useful for a
wide range of applications involving complex materials. We demonstrate the capabilities of our
implementation by analyzing the two example materials with varying complexities: a binary
metal alloy and a disordered lithium chromium oxyfluoride. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | IOP Publishing | |
dc.relation.ispartofseries | Journal of Physics: Condensed Matter | |
dc.rights | CC BY 4.0 | |
dc.subject.other | Monte Carlo | |
dc.subject.other | battery material | |
dc.subject.other | cluster expansion | |
dc.subject.other | disordered materials | |
dc.title | CLEASE : A versatile and user-friendly implementation of Cluster Expansion method | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201906052968 | |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Chemistry | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2019-06-05T09:15:05Z | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0953-8984 | |
dc.relation.numberinseries | 32 | |
dc.relation.volume | 31 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2019 IOP Publishing Ltd. | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | materiaalitiede | |
dc.subject.yso | metalliseokset | |
dc.subject.yso | tilastomenetelmät | |
dc.subject.yso | Monte Carlo -menetelmät | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14779 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4519 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3127 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6361 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1088/1361-648X/ab1bbc | |