Show simple item record

dc.contributor.authorChang, Jin Hyun
dc.contributor.authorKleiven, David
dc.contributor.authorMelander, Marko
dc.contributor.authorAkola, Jaakko
dc.contributor.authorGarcia-Lastra, Juan Maria
dc.contributor.authorVegge, Tejs
dc.date.accessioned2019-06-10T09:29:06Z
dc.date.available2019-06-10T09:29:06Z
dc.date.issued2019
dc.identifier.citationChang, J. H., Kleiven, D., Melander, M., Akola, J., Garcia-Lastra, J. M., & Vegge, T. (2019). CLEASE : A versatile and user-friendly implementation of Cluster Expansion method. <i>Journal of Physics: Condensed Matter</i>, <i>31</i>(32), Article 325901. <a href="https://doi.org/10.1088/1361-648X/ab1bbc" target="_blank">https://doi.org/10.1088/1361-648X/ab1bbc</a>
dc.identifier.otherCONVID_30544426
dc.identifier.otherTUTKAID_81297
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/64476
dc.description.abstractMaterials exhibiting a substitutional disorder such as multicomponent alloys and mixed metal oxides/oxyfluorides are of great importance in many scientific and technological sectors. Disordered materials constitute an overwhelmingly large configurational space, which makes it practically impossible to be explored manually using first-principles calculations such as density functional theory due to the high computational costs. Consequently, the use of methods such as cluster expansion (CE) is vital in enhancing our understanding of the disordered materials. CE dramatically reduces the computational cost by mapping the first-principles calculation results on to a Hamiltonian which is much faster to evaluate. In this work, we present our implementation of the CE method, which is integrated as a part of the atomic simulation environment (ASE) open-source package. The versatile and user-friendly code automates the complex set up and construction procedure of CE while giving the users the flexibility to tweak the settings and to import their own structures and previous calculation results. Recent advancements such as regularization techniques from machine learning are implemented in the developed code. The code allows the users to construct CE on any bulk lattice structure, which makes it useful for a wide range of applications involving complex materials. We demonstrate the capabilities of our implementation by analyzing the two example materials with varying complexities: a binary metal alloy and a disordered lithium chromium oxyfluoride.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIOP Publishing
dc.relation.ispartofseriesJournal of Physics: Condensed Matter
dc.rightsCC BY 4.0
dc.subject.otherMonte Carlo
dc.subject.otherbattery material
dc.subject.othercluster expansion
dc.subject.otherdisordered materials
dc.titleCLEASE : A versatile and user-friendly implementation of Cluster Expansion method
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201906052968
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-06-05T09:15:05Z
dc.description.reviewstatuspeerReviewed
dc.relation.issn0953-8984
dc.relation.numberinseries32
dc.relation.volume31
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 IOP Publishing Ltd.
dc.rights.accesslevelopenAccessfi
dc.subject.ysomateriaalitiede
dc.subject.ysometalliseokset
dc.subject.ysotilastomenetelmät
dc.subject.ysoMonte Carlo -menetelmät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14779
jyx.subject.urihttp://www.yso.fi/onto/yso/p4519
jyx.subject.urihttp://www.yso.fi/onto/yso/p3127
jyx.subject.urihttp://www.yso.fi/onto/yso/p6361
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1088/1361-648X/ab1bbc


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0