Show simple item record

dc.contributor.authorKuznetsov, Nikolay
dc.contributor.authorMokaev, Timur
dc.contributor.editorKozlov, Valery V.
dc.contributor.editorKudryashov, Nikolay A.
dc.contributor.editorNagornov, Oleg V.
dc.date.accessioned2019-05-20T07:20:06Z
dc.date.available2019-05-20T07:20:06Z
dc.date.issued2019
dc.identifier.citationKuznetsov, N., & Mokaev, T. (2019). Numerical analysis of dynamical systems : unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension. In V. V. Kozlov, N. A. Kudryashov, & O. V. Nagornov (Eds.), <i>MPMM 2018 : VII International Conference Problems of Mathematical Physics and Mathematical Modelling</i> (Article 012034). IOP Publishing. Journal of Physics: Conference Series, 1205. <a href="https://doi.org/10.1088/1742-6596/1205/1/012034" target="_blank">https://doi.org/10.1088/1742-6596/1205/1/012034</a>
dc.identifier.otherCONVID_30677409
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/64066
dc.description.abstractIn this article, on the example of the known low-order dynamical models, namely Lorenz, Rössler and Vallis systems, the difficulties of reliable numerical analysis of chaotic dynamical systems are discussed. For the Lorenz system, the problems of existence of hidden chaotic attractors and hidden transient chaotic sets and their numerical investigation are considered. The problems of the numerical characterization of a chaotic attractor by calculating finite-time time Lyapunov exponents and finite-time Lyapunov dimension along one trajectory are demonstrated using the example of computing unstable periodic orbits in the Rössler system. Using the example of the Vallis system describing the El Ninõ-Southern Oscillation it is demonstrated an analytical approach for localization of self-excited and hidden attractors, which allows to obtain the exact formulas or estimates of their Lyapunov dimensions.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIOP Publishing
dc.relation.ispartofMPMM 2018 : VII International Conference Problems of Mathematical Physics and Mathematical Modelling
dc.relation.ispartofseriesJournal of Physics: Conference Series
dc.rightsCC BY 3.0
dc.subject.otherunstable periodic orbits
dc.subject.otherhidden transient chaotic sets
dc.subject.otherhidden attractors
dc.subject.otherfinite-time Lyapunov dimension
dc.titleNumerical analysis of dynamical systems : unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-201905172664
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.date.updated2019-05-17T12:15:11Z
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.relation.issn1742-6588
dc.relation.numberinseries1205
dc.type.versionpublishedVersion
dc.rights.copyright© IOP Publishing Limited, 2019.
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceInternational Conference Problems of Mathematical Physics and Mathematical Modelling
dc.subject.ysokaaosteoria
dc.subject.ysonumeerinen analyysi
dc.subject.ysodynaamiset systeemit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p6339
jyx.subject.urihttp://www.yso.fi/onto/yso/p15833
jyx.subject.urihttp://www.yso.fi/onto/yso/p38899
dc.rights.urlhttp://creativecommons.org/licenses/by/3.0
dc.relation.doi10.1088/1742-6596/1205/1/012034
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 3.0
Except where otherwise noted, this item's license is described as CC BY 3.0