dc.contributor.author | Pölönen, Ilkka | |
dc.contributor.author | Rahkonen, Samuli | |
dc.contributor.author | Annala, Leevi | |
dc.contributor.author | Neittaanmäki, Noora | |
dc.contributor.editor | Choi, Bernard | |
dc.contributor.editor | Zeng, Haishan | |
dc.date.accessioned | 2019-05-13T07:22:07Z | |
dc.date.available | 2019-05-13T07:22:07Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Pölönen, I., Rahkonen, S., Annala, L., & Neittaanmäki, N. (2019). Convolutional neural networks in skin cancer detection using spatial and spectral domain. In B. Choi, & H. Zeng (Eds.), <i>Proceedings of SPIE Volume 10851 : Photonics in Dermatology and Plastic Surgery 2019</i> (Article 108510B). SPIE, The International Society for Optical Engineering. SPIE conference proceedings, 10851. <a href="https://doi.org/10.1117/12.2509871" target="_blank">https://doi.org/10.1117/12.2509871</a> | |
dc.identifier.other | CONVID_28979443 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/63888 | |
dc.description.abstract | Skin cancers are world wide deathly health problem, where significant life and cost savings could be achieved if
detection of cancer can be done in early phase. Hypespectral imaging is prominent tool for non-invasive screening.
In this study we compare how use of both spectral and spatial domain increase classification performance of
convolutional neural networks. We compare five different neural network architectures for real patient data. Our
models gain same or slightly better positive predictive value as clinicians. Towards more general and reliable
model more data is needed and collection of training data should be systematic. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | SPIE, The International Society for Optical Engineering | |
dc.relation.ispartof | Proceedings of SPIE Volume 10851 : Photonics in Dermatology and Plastic Surgery 2019 | |
dc.relation.ispartofseries | SPIE conference proceedings | |
dc.rights | In Copyright | |
dc.subject.other | neural networks | |
dc.title | Convolutional neural networks in skin cancer detection using spatial and spectral domain | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-201904042072 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.date.updated | 2019-04-04T12:15:09Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0277-786X | |
dc.relation.numberinseries | 10851 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Society of Photo-Optical Instrumentation Engineers (SPIE), 2019. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | Photonics in Dermatology and Plastic Surgery | |
dc.subject.yso | spektrikuvaus | |
dc.subject.yso | ihosyöpä | |
dc.subject.yso | neuroverkot | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26364 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13613 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7292 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1117/12.2509871 | |
dc.type.okm | A4 | |