Diffractive dijet production and Wigner distributions from the color glass condensate
Mäntysaari, H., Mueller, N., & Schenke, B. (2019). Diffractive dijet production and Wigner distributions from the color glass condensate. Physical Review D, 99(7), Article 074004. https://doi.org/10.1103/PhysRevD.99.074004
Julkaistu sarjassa
Physical Review DPäivämäärä
2019Tekijänoikeudet
© 2019 the Author(s)
Experimental processes that are sensitive to parton Wigner distributions provide a powerful tool to advance
our understanding of proton structure. In this work, we compute gluon Wigner and Husimi distributions of
protons within the color glass condensate framework, which includes a spatially dependent McLerranVenugopalan initial configuration and the explicit numerical solution of the Jalilian-Marian–Iancu–
McLerran–Weigert–Leonidov–Kovner equations. We determine the leading anisotropy of the Wigner and
Husimi distributions as a function of the angle between the impact parameter and transverse momentum. We
study experimental signatures of these angular correlations at a proposed electron-ion collider by computing
coherent diffractive dijet production cross sections in e þ p collisions within the same framework.
Specifically, we predict the elliptic modulation of the cross section as a function of the relative angle
between the nucleon recoil and dijet transverse momentum for a wide kinematical range.We further predict its
dependence on the collision energy, which is dominated by the growth of the proton with decreasing x.
...
Julkaisija
American Physical SocietyISSN Hae Julkaisufoorumista
2470-0010Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/30604832
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Euroopan komissio; Suomen AkatemiaRahoitusohjelmat(t)
ERC European Research Council, H2020; Tutkijatohtori, SA
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
We thank Guillaume Beuf, Renaud Boussarie, Yoshitaka Hatta, Yacine Mehtar-Tani, Alba Soto-Ontoso, Thomas Ullrich, Farid Salazar Wong, Andrey Tarasov and Raju Venugopalan for discussions. N. M. thanks the Department of Physics, University of Jyväskylä for their kind hospitality during the completion of this work. H. M. wishes to thank the Nuclear Theory Group at BNL for hospitality during the early stages of this work. H. M. is supported by the Academy of Finland, Project No. 314764, and by the European Research Council, Grant No. ERC-2015-CoG-681707. N. M. and B. S. are supported by the U.S. Department of Energy under Contract No. DE-SC0012704. N. M. is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project No. 404640738. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231. Additional computing resources from CSC—IT Center for Science in Espoo, Finland and from the Finnish Grid and Cloud Infrastructure (persistent identifier urn:nbn:fi:research-infras-2016072533) were also used. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Studying high pT momentum azimuthal anisotropies in unpolarized proton-proton collisions using transverse momentum dependent (TMD) parton distribution and fragmentation functions
Soudi, Ismail; Majumder, Abhijit (Sissa, 2024)Recent experimental results have shown that small systems such as p-p and p-A collisions exhibit a non-zero azimuthal anisotropy even at large pT.However, no evidence of jet quenching has been observed in these collisions. We ... -
Intrinsic charm quark valence distribution of the proton
Ball, Richard D.; Candido, Alessandro; Cruz-Martinez, Juan; Forte, Stefano; Giani, Tommaso; Hekhorn, Felix; Magni, Giacomo; Nocera, Emanuele R.; Rojo, Juan; Stegeman, Roy (American Physical Society (APS), 2024)We provide a first quantitative indication that the wave function of the proton contains unequal distributions of charm quarks and antiquarks, i.e. a nonvanishing intrinsic valence charm distribution. A significant ... -
NNLO nuclear parton distribution functions with electroweak-boson production data from the LHC
Helenius, Ilkka; Walt, Marina; Vogelsang, Werner (American Physical Society (APS), 2022)We present new sets of nuclear parton distribution functions (nPDFs) at next-to-leading order and next-to-next-to-leading order in perturbative QCD. Our analyses are based on deeply inelastic scattering data with charged-lepton ... -
Proton hot spots and exclusive vector meson production
Demirci, S.; Lappi, T.; Schlichting, S. (American Physical Society (APS), 2022)We explore consequences of the existence of gluonic hot spots inside the proton for coherent and incoherent exclusive vector meson production cross sections in deep inelastic scattering. By working in the dilute limit of ... -
Measurement of pion, kaon and proton production in proton–proton collisions at √s = 7 TeV
ALICE Collaboration (Springer Berlin Heidelberg, 2015)The measurement of primary π±, K ±, p and p production at mid-rapidity (|y| < 0.5) in proton–proton collisions at √s = 7 TeV performed with a large ion collider experiment at the large hadron collider (LHC) is ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.