Show simple item record

dc.contributor.authorPulkkinen, Jani T.
dc.contributor.authorEriksson-Kallio, Anna M.
dc.contributor.authorAalto, Sanni L.
dc.contributor.authorTiirola, Marja
dc.contributor.authorKoskela, Juha
dc.contributor.authorKiuru, Tapio
dc.contributor.authorVielma, Jouni
dc.date.accessioned2019-04-12T05:52:18Z
dc.date.available2021-05-02T21:35:07Z
dc.date.issued2019
dc.identifier.citationPulkkinen, J. T., Eriksson-Kallio, A. M., Aalto, S. L., Tiirola, M., Koskela, J., Kiuru, T., & Vielma, J. (2019). The effects of different combinations of fixed and moving bed bioreactors on rainbow trout (Oncorhynchus mykiss) growth and health, water quality and nitrification in recirculating aquaculture systems. <i>Aquacultural Engineering</i>, <i>85</i>, 98-105. <a href="https://doi.org/10.1016/j.aquaeng.2019.03.004" target="_blank">https://doi.org/10.1016/j.aquaeng.2019.03.004</a>
dc.identifier.otherCONVID_29712223
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/63468
dc.description.abstractThe effect of bioreactor design on nitrification efficiency has been well studied, but less is known about the overall impacts on water quality. Besides nitrification, submerged fixed bed bioreactors (FBBR) trap fine solid particles, whereas moving bed bioreactors (MBBR) grind solids, possibly increasing solids and particle accumulation in the system. In this experiment, the effects of different combinations of fixed bed and moving bed bioreactors on water quality, solids removal, particle size distribution, fish health based on histopathological changes and nitrification efficiency were studied in laboratory scale recirculating aquaculture systems (RAS) with rainbow trout (Oncorhynchus mykiss). Three set-ups with triplicate tanks were used: 1. two consecutive fixed bed bioreactors (FF); 2. a fixed bed bioreactor followed by a moving bed bioreactor (FM) and 3. two consecutive moving bed bioreactors (MM). Fish performance was not influenced by the design of the bioreactor, specific growth rate (SGR) being between 1.59 and 1.64% d−1 and feed conversion ratio (FCR) between 0.95 and 0.98. Water nitrite concentration was higher in the FF systems compared to FM and MM systems, whereas the average total ammonia nitrogen concentration (TAN) was not influenced by the treatments. Nitrification rate, which was measured in the laboratory, followed the water nitrite levels, indicating highest total ammonium oxidation rates in the MM systems. UV254 absorbance and total organic carbon (TOC) concentrations were higher in the groups with moving bed systems, indicating accumulation of organic substances in the circulating water. The total volume of particles was higher in the MM systems as compared to the FF systems. The total solids balance was similar in all the bioreactor groups, since the removal of solids by the FBBR backwash was compensated by the drum filter in the FM and MM systems. In general, no significant histopathological difference in gill, kidney, heart and liver tissue were observed between the RAS treatment groups and the flow-through treatment.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesAquacultural Engineering
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherbiofiltration
dc.subject.otherhistopathology
dc.subject.otherparticle size distribution
dc.subject.otherwater quality monitoring
dc.titleThe effects of different combinations of fixed and moving bed bioreactors on rainbow trout (Oncorhynchus mykiss) growth and health, water quality and nitrification in recirculating aquaculture systems
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201904082096
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineAkvaattiset tieteetfi
dc.contributor.oppiaineYmpäristötiedefi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineAquatic Sciencesen
dc.contributor.oppiaineEnvironmental Scienceen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-04-08T12:15:19Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange98-105
dc.relation.issn0144-8609
dc.relation.numberinseries0
dc.relation.volume85
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 Elsevier B.V.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysovesiviljely (kalatalous)
dc.subject.ysovedenlaatu
dc.subject.ysosuodatus
dc.subject.ysonitrifikaatio
dc.subject.ysobioreaktorit
dc.subject.ysotaudinaiheuttajat
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p5099
jyx.subject.urihttp://www.yso.fi/onto/yso/p15738
jyx.subject.urihttp://www.yso.fi/onto/yso/p7323
jyx.subject.urihttp://www.yso.fi/onto/yso/p12486
jyx.subject.urihttp://www.yso.fi/onto/yso/p37822
jyx.subject.urihttp://www.yso.fi/onto/yso/p8822
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.aquaeng.2019.03.004
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0