Näytä suppeat kuvailutiedot

dc.contributor.authorBazhenov, Andrey
dc.contributor.authorHonkala, Karoliina
dc.date.accessioned2019-04-04T09:50:08Z
dc.date.available2019-04-04T09:50:08Z
dc.date.issued2019
dc.identifier.citationBazhenov, A., & Honkala, K. (2019). Globally Optimized Equilibrium Shapes of Zirconia-Supported Rh and Pt Nanoclusters : Insights into Site Assembly and Reactivity. <i>Journal of Physical Chemistry C</i>, <i>123</i>(12), 7209-7216. <a href="https://doi.org/10.1021/acs.jpcc.9b00272" target="_blank">https://doi.org/10.1021/acs.jpcc.9b00272</a>
dc.identifier.otherCONVID_28947422
dc.identifier.otherTUTKAID_80825
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/63389
dc.description.abstractMetal−support interfaces form an active site for many important catalytic reactions. The modeling of these interfacial sites calls for approximations to set up a structure model, which in turn may significantly have an impact on studied chemistry and obtained atomistic understanding. Herein, we have employed a density functional theory-based genetic approach to obtain globally optimized nanostructures for Rh and Pt clusters on a ZrO2 support. The analysis of the obtained structures shows that Rh clusters take more compact shapes, whereas Pt prefers elongated and low-symmetry structures. We find that metal−oxide perimeter sites are structurally different, presenting varying Pt and Rh coordinations and CO adsorption energies. Our analysis shows that the presence of a support always destabilizes CO adsorption at the cluster edge, but the magnitude of destabilization varies substantially from site to site. The complexity of catalyst−support interactions demonstrates that even an inert support can intricately influence the reactivity of interfacial sites.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesJournal of Physical Chemistry C
dc.rightsCC BY 4.0
dc.subject.othersite assembly
dc.titleGlobally Optimized Equilibrium Shapes of Zirconia-Supported Rh and Pt Nanoclusters : Insights into Site Assembly and Reactivity
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201903292003
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-03-29T07:15:20Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange7209-7216
dc.relation.issn1932-7447
dc.relation.numberinseries12
dc.relation.volume123
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 American Chemical Society.
dc.rights.accesslevelopenAccessfi
dc.subject.ysonanorakenteet
dc.subject.ysoreaktiivisuus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p25315
jyx.subject.urihttp://www.yso.fi/onto/yso/p19397
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1021/acs.jpcc.9b00272
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0