Asymptotical convergence evaluation for a parabolic problem arising in circuit theory
Marinov, C. A., Neittaanmäki, P. (1990). Asymptotical convergence evaluation for a parabolic problem arising in circuit theory. ZAMM, 70 (8), 344-347. doi:10.1002/zamm.19900700821
Julkaistu sarjassa
ZAMMPäivämäärä
1990Pääsyrajoitukset
Tekijänoikeudet
© Wiley
Julkaisija
WileyISSN Hae Julkaisufoorumista
0044-2267Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Asymptotic mean value formulas for parabolic nonlinear equations
Blanc, Pablo; Charro, Fernando; Manfredi, Juan J.; Rossi, Julio D. (Union Matematica Argentina, 2022)In this paper we characterize viscosity solutions to nonlinear parabolic equations (including parabolic Monge–Ampère equations) by asymptotic mean value formulas. Our asymptotic mean value formulas can be interpreted from ... -
Bounds for the solution of a system of parabolic equations arising in circuit theory
Marinov, Corneliu A.; Neittaanmäki, Pekka; Santanen, Jukka-Pekka (North-Holland, 1992)The modelling of the influence of interconnections on the delay time in MOS integrated circuits leads to a system of parabolic equations coupled by boundary conditions given in the form of the ordinary differential equation ... -
Convergence of dynamic programming principles for the p-Laplacian
del Teso, Félix; Manfredi, Juan J.; Parviainen, Mikko (De Gruyter, 2022)We provide a unified strategy to show that solutions of dynamic programming principles associated to the p-Laplacian converge to the solution of the corresponding Dirichlet problem. Our approach includes all previously ... -
Parallel finite element splitting-up method for parabolic problems
Tai, Xue-Cheng; Neittaanmäki, Pekka (Wiley, 1991)An efficient method for solving parabolic systems is presented. The proposed method is based on the splitting‐up principle in which the problem is reduced to a series of independent 1D problems. This enables it to be used ... -
Stability of degenerate parabolic Cauchy problems
Lukkari, Teemu; Parviainen, Mikko (American Institute of Mathematical Sciences, 2015)We prove that solutions to Cauchy problems related to the p-parabolic equations are stable with respect to the nonlinearity exponent p. More specifically, solutions with a fixed initial trace converge in an L q -space ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.