Parallel finite element splitting-up method for parabolic problems
Tai, X.-C., Neittaanmäki, P. (1991). Parallel finite element splitting-up method for parabolic problems. Numerical Methods for Partial Differential Equations, 7 (3), 209-225. doi:10.1002/num.1690070302
Julkaistu sarjassa
Numerical Methods for Partial Differential EquationsPäivämäärä
1991Pääsyrajoitukset
Tekijänoikeudet
© Wiley
An efficient method for solving parabolic systems is presented. The proposed method is based on the splitting‐up principle in which the problem is reduced to a series of independent 1D problems. This enables it to be used with parallel processors. We can solve multidimensional problems by applying only the 1D method and consequently avoid the difficulties in constructing a finite element space for multidimensional problems. The method is suitable for general domains as well as rectangular domains. Every 1D subproblem is solved by applying cubic B‐splines. Several numerical examples are presented.
Julkaisija
WileyISSN Hae Julkaisufoorumista
0749-159XMetadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A parallel FE-splitting up method to parabolic problems
Tai, Xue-Cheng; Neittaanmäki, Pekka (University of Jyväskylä, 1989) -
A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations
Lu, T.; Neittaanmäki, P.; Tai, X.-C. (AFCET Gauhtier-Villars, 1992)The tradìtíonal splitting-up method or fractíonal step method is stuítable for sequentìal compulìng. Thís means that the computing of the present fractional step needs the value of the previous fractional steps. In thìs ... -
A nontraditional approach for solving the Neumann problem by the finite element method
Křižek, Michal; Neittaanmäki, Pekka; Vondrák, Miroslav (Sociedade Brasileira de Matemática Aplicada e Computacional, 1992)We present a new variational formulation of a second order order elliptic problem with the Neumann boundary conditions. This formulation does not require any quotient spaces and is advisable for finite element approximations. -
On the finite element method for time-harmonic acoustic boundary value problems
Neittaanmäki, Pekka; Picard, Rainer (Pergamon Press, 1981)The time harmonic acoustic boundary value problem in a smooth, bounded domain G of R2 is considered as a first order system. The optimal asymptotic L2(G) and H1(G)-error estimates 0(h2) and 0(h) resp. are derived for a ... -
Guaranteed lower bounds for cost functionals of time-periodic parabolic optimization problems
Wolfmayr, Monika (Elsevier, 2020)In this paper, a new technique is shown for deriving computable, guaranteed lower bounds of functional type (minorants) for two different cost functionals subject to a parabolic time-periodic boundary value problem. Together ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.