A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations
Lu, T., Neittaanmäki, P. & Tai, X.-C. (1992). A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, 26 (6), 673-708. Retrieved from https://eudml.org/doc/193681
Julkaistu sarjassa
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse NumériquePäivämäärä
1992Oppiaine
MatematiikkaTekijänoikeudet
© AFCET, 1992, tous droits réservés.
The tradìtíonal splitting-up method or fractíonal step method is stuítable for
sequentìal compulìng. Thís means that the computing of the present fractional step needs the
value of the previous fractional steps. In thìs paper we propose a new splitting-up scheme for
which the computing of the fractional steps is índependent of each other and therefore can be
computed by parallel processors. We have proved the convergence estimates of this scheme both
for steady state and nonsteady state linear and nonlinear problems. To use .finite element method
to solve Navier-Stokes problems it is always dfficult to handle the zero-divergent finíte element
spaces. Here, by using the splitting-up method we can use the usual finite element spaces to solve
it. Moreover, the proposed method can solve the steady and nonsteady state Navíer-Stokes
problem by only solving some one dimensional línear systems. All these one dimensional systems
are índependent of each other, so they can be computed by parallel processors.
...
Julkaisija
AFCET Gauhtier-VillarsISSN Hae Julkaisufoorumista
0764-583XAsiasanat
Alkuperäislähde
https://eudml.org/doc/193681Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A graph-based multigrid with applications
Pennanen, Anssi (University of Jyväskylä, 2010) -
Application of novel relaxation time approximation for the Boltzmann equation in relativistic fluid dynamics
Piipponen, Mika (2024)Ultrarelativistic heavy-ion collisions are modelled with relativistic fluid dynamics. Since quark-gluon plasma formed in collider experiments cannot be directly measured, the investigation of the substance is heavily based ... -
Parallel finite element splitting-up method for parabolic problems
Tai, Xue-Cheng; Neittaanmäki, Pekka (Wiley, 1991)An efficient method for solving parabolic systems is presented. The proposed method is based on the splitting‐up principle in which the problem is reduced to a series of independent 1D problems. This enables it to be used ... -
A parallel splitting up method and its application to Navier-Stokes equations
Lu, T.; Neittaanmäki, Pekka; Tai, Xue-Cheng (Pergamon Press, 1991)A parallel splitting-up method (or the so called alternating-direction method) is proposed in this paper. The method not only reduces the original linear and nonlinear problems into a series of one dimensional linear ... -
Mikrojärjestelmien virtausdynamiikka numeerisen mallintamisen näkökulmasta
Tuovinen, Tero (2005)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.