Näytä suppeat kuvailutiedot

dc.contributor.authorVuornos, Kaisa
dc.contributor.authorOjansivu, Miina
dc.contributor.authorKoivisto, Janne T.
dc.contributor.authorHäkkänen, Heikki
dc.contributor.authorBelay, Birhanu
dc.contributor.authorMontonen, Toni
dc.contributor.authorHuhtala, Heini
dc.contributor.authorKääriäinen, Minna
dc.contributor.authorHupa, Leena
dc.contributor.authorKellomäki, Minna
dc.contributor.authorHyttinen, Jari
dc.contributor.authorIhalainen, Janne
dc.contributor.authorMiettinen, Susanna
dc.date.accessioned2019-03-19T09:33:54Z
dc.date.available2021-06-01T21:35:08Z
dc.date.issued2019
dc.identifier.citationVuornos, K., Ojansivu, M., Koivisto, J. T., Häkkänen, H., Belay, B., Montonen, T., Huhtala, H., Kääriäinen, M., Hupa, L., Kellomäki, M., Hyttinen, J., Ihalainen, J., & Miettinen, S. (2019). Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels. <i>Materials Science and Engineering C</i>, <i>99</i>, 905-918. <a href="https://doi.org/10.1016/j.msec.2019.02.035" target="_blank">https://doi.org/10.1016/j.msec.2019.02.035</a>
dc.identifier.otherCONVID_28928851
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/63215
dc.description.abstractBackground: Due to unmet need for bone augmentation, our aim was to promote osteogenic differentiation of human adipose stem cells (hASCs) encapsulated in gellan gum (GG) or collagen type I (COL) hydrogels with bioactive glass (experimental glass 2-06 of composition [wt-%]: Na2O 12.1, K2O 14.0, CaO 19.8, P2O5 2.5, B2O3 1.6, SiO2 50.0) extract based osteogenic medium (BaG OM) for bone construct development. GG hydrogels were crosslinked with spermidine (GG-SPD) or BaG extract (GG-BaG). Methods: Mechanical properties of cell-free GG-SPD, GG-BaG, and COL hydrogels were tested in osteogenic medium (OM) or BaG OM at 0, 14, and 21d. Hydrogel embedded hASCs were cultured in OM or BaG OM for 3, 14, and 21d, and analyzed for viability, cell number, osteogenic gene expression, osteocalcin production, and mineralization. Hydroxyapatite-stained GG-SPD samples were imaged with Optical Projection Tomography (OPT) and Selective Plane Illumination Microscopy (SPIM) in OM and BaG OM at 21d. Furthermore, Raman spectroscopy was used to study the calcium phosphate (CaP) content of hASC-secreted ECM in GG-SPD, GG-BaG, and COL at 21d in BaG OM. Results: The results showed viable rounded cells in GG whereas hASCs were elongated in COL. Importantly, BaG OM induced significantly higher cell number and higher osteogenic gene expression in COL. In both hydrogels, BaG OM induced strong mineralization confirmed as CaP by Raman spectroscopy and significantly improved mechanical properties. GG-BaG hydrogels rescued hASC mineralization in OM. OPT and SPIM showed homogeneous 3D cell distribution with strong mineralization in BaG OM. Also, strong osteocalcin production was visible in COL. Conclusions: Overall, we showed efficacious osteogenesis of hASCs in 3D hydrogels with BaG OM with potential for bone-like grafts.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesMaterials Science and Engineering C
dc.rightsCC BY-NC-ND 4.0
dc.subject.otheradipose stem cell
dc.subject.otherbioactive glass
dc.subject.otherosteogenic differentiation
dc.subject.othergellan gum hydrogel
dc.subject.othercollagen type I hydrogel
dc.titleBioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201903081782
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineCell and Molecular Biologyen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-03-08T10:15:07Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange905-918
dc.relation.issn0928-4931
dc.relation.numberinseries0
dc.relation.volume99
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 Elsevier B.V.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoluukudokset
dc.subject.ysoimplantit
dc.subject.ysolasi
dc.subject.ysobiologinen aktiivisuus
dc.subject.ysokantasolut
dc.subject.ysogeelit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p24381
jyx.subject.urihttp://www.yso.fi/onto/yso/p20281
jyx.subject.urihttp://www.yso.fi/onto/yso/p16484
jyx.subject.urihttp://www.yso.fi/onto/yso/p24582
jyx.subject.urihttp://www.yso.fi/onto/yso/p13517
jyx.subject.urihttp://www.yso.fi/onto/yso/p12973
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.msec.2019.02.035
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0