Latency-Oblivious Distributed Task Scheduling for Mobile Edge Computing
Samanta, A., Chang, Z., & Han, Z. (2018). Latency-Oblivious Distributed Task Scheduling for Mobile Edge Computing. In GLOBECOM 2018 : Proceedings of the 2018 IEEE Global Communications Conference. IEEE. IEEE Global Communications Conference. https://doi.org/10.1109/GLOCOM.2018.8647673
Julkaistu sarjassa
IEEE Global Communications ConferencePäivämäärä
2018Tekijänoikeudet
© 2018 IEEE.
Mobile Edge Computing (MEC) is emerging as
one of the effective platforms for offloading the resource- and
latency-constrained computational services of modern mobile
applications. For latency- and resource-constrained mobile devices, the important issues include: 1) minimize end-to-end
service latency; 2) minimize service completion time; 3) high
quality-of-service (QoS) requirement to offload the complex
computational services. To address the above issues, a latencyoblivious distributed task scheduling scheme is designed in this
work to maximize the QoS performance and goodput for the
MEC services. Unlike most of the existing works, we consider
the latency-oblivious property of different services in order to
achieve the optimized goodput and service latency. Furthermore,
we design an optimal decision engine for efficiently offloading
the computational services. Simulation results are presented to
demonstrate the effectiveness of the proposed offloading scheme
over other existing state-of-the-art solutions, in terms of service
latency, goodput, service completion time and fairness.
...
Julkaisija
IEEEEmojulkaisun ISBN
978-1-5386-4728-8Konferenssi
Kuuluu julkaisuun
GLOBECOM 2018 : Proceedings of the 2018 IEEE Global Communications ConferenceISSN Hae Julkaisufoorumista
2334-0983Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28945656
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Self-management in distributed systems : smart adaptive framework for pervasive computing environments
Nagy, Michal (University of Jyväskylä, 2013) -
Modeling and Mitigating Errors in Belief Propagation for Distributed Detection
Abdi, Younes; Ristaniemi, Tapani (Institute of Electrical and Electronics Engineers (IEEE), 2021)We study the behavior of the belief-propagation (BP) algorithm affected by erroneous data exchange in a wireless sensor network (WSN). The WSN conducts a distributed multidimensional hypothesis test over binary random ... -
Energy Efficient Scheduling in Content Distribution Collaborative Mobile Clusters
Hu, Yun; Chen, Yanhui; Chang, Zheng (IEEE, 2020)Most of the existing literatures on green communications aimed to improve the energy efficiency at the base station or data server. However, in order to fully experience high rate broadband multimedia services, prolonging ... -
Optimization of Linearized Belief Propagation for Distributed Detection
Abdi, Younes; Ristaniemi, Tapani (IEEE, 2020)In this paper, we investigate distributed inference schemes, over binary-valued Markov random fields, which are realized by the belief propagation (BP) algorithm. We first show that a decision variable obtained by the BP ... -
Challenges in Geographically Distributed Information System Development : A Case Study
Asp, Jali; Taipalus, Toni; Seppänen, Ville (IEEE, 2021)Geographically distributed information system development (ISD) projects are more and more common, especially among organisations operating in global markets. Distributed ISD yields potential competitive advantages by ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.