A FE-splitting-up method and its application to distributed parameter in parabolic equations
Tai, X.-C., Neittaanmäki, P. (1990). A FE-splitting-up method and its application to distributed parameter in parabolic equations. In A. G. Law & C. L. Wang (Eds.) Approximation, Optimization and Computing : Theory and Applications. (pp. 185-188).
Päivämäärä
1990Pääsyrajoitukset
Tekijänoikeudet
© the Authors & North-Holland
Julkaisija
North-HollandEmojulkaisun ISBN
0-444-88693-1Kuuluu julkaisuun
Approximation, Optimization and Computing : Theory and ApplicationsMetadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Parallel finite element splitting-up method for parabolic problems
Tai, Xue-Cheng; Neittaanmäki, Pekka (Wiley, 1991)An efficient method for solving parabolic systems is presented. The proposed method is based on the splitting‐up principle in which the problem is reduced to a series of independent 1D problems. This enables it to be used ... -
A parallel FE-splitting up method to parabolic problems
Tai, Xue-Cheng; Neittaanmäki, Pekka (University of Jyväskylä, 1989) -
On the numerical solution of the distributed parameter identification problem
Tai, Xue-Cheng; Neittaanmäki, Pekka (Birkhäuser, 1991)A new error estimate is derived for the numerical identification of a distributed parameter a(x) in a two point boundary value problem, for the case that the finite element method and the fit-to-data output-least-squares ... -
A delay time bound for distributed parameter circuits with bipolar transistors
Marinov, Corneliu A.; Neittaanmäki, Pekka (Wiley, 1990) -
A linear approach for the nonlinear distributed parameter identification problem
Tai, Xue-Cheng; Neittaanmäki, Pekka (Birkhäuser, 1991)In identifying the nonlinear distributed parameters we propose an approach, which enables us to identify the nonlinear distributed parameters by just solving linear problems. In this approach we just need to identify linear ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.