Näytä suppeat kuvailutiedot

dc.contributor.authorIversen, Einar
dc.contributor.authorUrsin, Bjørn
dc.contributor.authorSaksala, Teemu
dc.contributor.authorIlmavirta, Joonas
dc.contributor.authorHoop, Maarten V de
dc.date.accessioned2019-01-17T12:48:07Z
dc.date.available2019-01-17T12:48:07Z
dc.date.issued2019
dc.identifier.citationIversen, E., Ursin, B., Saksala, T., Ilmavirta, J., & Hoop, M. V. D. (2019). Higher-order Hamilton-Jacobi perturbation theory for anisotropic heterogeneous media : Dynamic ray tracing in Cartesian coordinates. <i>Geophysical Journal International</i>, <i>216</i>(3), 2044-2070. <a href="https://doi.org/10.1093/gji/ggy533" target="_blank">https://doi.org/10.1093/gji/ggy533</a>
dc.identifier.otherCONVID_28810421
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/62535
dc.description.abstractWith a Hamilton–Jacobi equation in Cartesian coordinates as a starting point, it is common to use a system of ordinary differential equations describing the continuation of first-order derivatives of phase-space perturbations along a reference ray. Such derivatives can be exploited for calculating geometrical spreading on the reference ray and for establishing a framework for second-order extrapolation of traveltime to points outside the reference ray. The continuation of first-order derivatives of phase-space perturbations has historically been referred to as dynamic ray tracing. The reason for this is its importance in the process of calculating amplitudes along the reference ray. We extend the standard dynamic ray-tracing scheme to include higher-order derivatives of the phase-space perturbations. The main motivation is to extrapolate and interpolate amplitude and phase properties of high-frequency Green’s functions to nearby (paraxial) source and receiver locations. Principal amplitude coefficients, geometrical spreading factors, geometrical spreading matrices, ray propagator matrices, traveltimes, slowness vectors and curvature matrices are examples of quantities for which we enhance the computation potential. This, in turn, has immediate applications in modelling, mapping and imaging. Numerical tests for 3-D isotropic and anisotropic heterogeneous models yield clearly improved extrapolation results for the traveltime and geometrical spreading. One important conclusion is that the extrapolation function for the geometrical spreading must be at least third order to be appropriate at large distances away from the reference ray.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherOxford University Press
dc.relation.ispartofseriesGeophysical Journal International
dc.rightsIn Copyright
dc.subject.othernumerical approximations and analysis
dc.subject.othernumerical modelling
dc.subject.otherbody waves
dc.subject.othercomputational seismology
dc.subject.otherseismic anisotropy
dc.subject.otherwave propagation
dc.titleHigher-order Hamilton-Jacobi perturbation theory for anisotropic heterogeneous media : Dynamic ray tracing in Cartesian coordinates
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201901171228
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-01-17T10:15:08Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange2044-2070
dc.relation.issn0956-540X
dc.relation.numberinseries3
dc.relation.volume216
dc.type.versionacceptedVersion
dc.rights.copyright© The Authors 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber295853
dc.subject.ysoapproksimointi
dc.subject.ysodifferentiaaliyhtälöt
dc.subject.ysonumeerinen analyysi
dc.subject.ysoseismologia
dc.subject.ysoaaltoliike
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p4982
jyx.subject.urihttp://www.yso.fi/onto/yso/p3552
jyx.subject.urihttp://www.yso.fi/onto/yso/p15833
jyx.subject.urihttp://www.yso.fi/onto/yso/p9661
jyx.subject.urihttp://www.yso.fi/onto/yso/p698
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1093/gji/ggy533
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundinginformationMVdH gratefully acknowledges support from the Simons Foundation under the MATH + X program, the National Science Foundation under grant DMS-1815143 and the corporate members of the Geo-Mathematical Group at Rice University. TS gratefully acknowledges support from the Simons Foundation under the MATH + X program. JI has been supported by the Academy of Finland (decision 295853). BU has received support from the Research Council of Norway through the ROSE project. EI and BU are grateful for being invited to meetings at Rice University. In this work we have used academic software licenses from NORSAR and MATLAB.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright