dc.contributor.author | Bárány, Balázs | |
dc.contributor.author | Käenmäki, Antti | |
dc.contributor.author | Koivusalo, Henna | |
dc.date.accessioned | 2019-01-04T06:25:26Z | |
dc.date.available | 2019-01-04T06:25:26Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Bárány, B., Käenmäki, A., & Koivusalo, H. (2018). Dimension of self-affine sets for fixed translation vectors. <i>Journal of the London Mathematical Society</i>, <i>98</i>(1), 223-252. <a href="https://doi.org/10.1112/jlms.12132" target="_blank">https://doi.org/10.1112/jlms.12132</a> | |
dc.identifier.other | CONVID_28024893 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/60877 | |
dc.description.abstract | An affine iterated function system is a finite collection of affine invertible contractions
and the invariant set associated to the mappings is called self-affine. In 1988, Falconer proved
that, for given matrices, the Hausdorff dimension of the self-affine set is the affinity dimension for
Lebesgue almost every translation vectors. Similar statement was proven by Jordan, Pollicott, and
Simon in 2007 for the dimension of self-affine measures. In this article, we have an orthogonal
approach. We introduce a class of self-affine systems in which, given translation vectors, we get
the same results for Lebesgue almost all matrices. The proofs rely on Ledrappier-Young theory
that was recently verified for affine iterated function systems by Bárány and Käenmäki, and a new
transversality condition, and in particular they do not depend on properties of the Furstenberg
measure. This allows our results to hold for self-affine sets and measures in any Euclidean space. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Oxford University Press | |
dc.relation.ispartofseries | Journal of the London Mathematical Society | |
dc.rights | In Copyright | |
dc.subject.other | vektorit | |
dc.subject.other | vectors | |
dc.title | Dimension of self-affine sets for fixed translation vectors | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201812175156 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2018-12-17T10:15:22Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 223-252 | |
dc.relation.issn | 0024-6107 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 98 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2018 London Mathematical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | matematiikka | |
dc.subject.yso | matemaattiset objektit | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3160 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27190 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1112/jlms.12132 | |
dc.type.okm | A1 | |