Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet
Guo, F.-S., Day, B. M., Chen, Y.-C., Tong, M.-L., Mansikkamäki, A., & Layfield, R. A. (2018). Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science, 362(6421), 1400-1403. https://doi.org/10.1126/science.aav0652
Published in
ScienceAuthors
Date
2018Discipline
Epäorgaaninen ja analyyttinen kemiaNanoscience CenterInorganic and Analytical ChemistryNanoscience CenterCopyright
2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science.
Single-molecule magnets (SMMs) containing only one metal center may represent the
lower size limit for molecule-based magnetic information storage materials. Their current
15 drawback is that all SMMs require liquid-helium cooling to show magnetic memory effects. We
now report a chemical strategy to access the dysprosium metallocene cation [(CpiPr5)Dy(Cp*)]+
(CpiPr5 = penta-iso-propylcyclopentadienyl, Cp* = pentamethylcyclopentadienyl), which displays
magnetic hysteresis above liquid-nitrogen temperatures. An effective energy barrier to reversal of
the magnetization of Ueff = 1,541 cm–1
is also measured. The magnetic blocking temperature of TB
20 = 80 K for this cation overcomes an essential barrier towards the development of nanomagnet
devices that function at practical temperatures.
Publisher
American Association for the Advancement of ScienceISSN Search the Publication Forum
0036-8075Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/28681703
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
A Dysprosium Metallocene Single-Molecule Magnet Functioning at the Axial Limit
Guo, Fu-Sheng; Day, Benjamin M.; Chen, Yan-Cong; Tong, Ming-Liang; Mansikkamäki, Akseli; Layfield, Richard A. (Wiley-VCH Verlag, 2017)Abstraction of a chloride ligand from the dysprosium metallocene [(Cpttt)2DyCl] (1Dy Cpttt=1,2,4‐tri(tert‐butyl)cyclopentadienide) by the triethylsilylium cation produces the first base‐free rare‐earth metallocenium cation ... -
Asymmetric Ring Opening in Tetrazine‐based Ligand Affording a Tetranuclear Opto‐Magnetic Ytterbium Complex
Richardson, Paul; Marin, Riccardo; Zhang, Yixin; Gabidullin, Bulat; Ovens, Jeffrey; Moilanen, Jani O.; Murugesu, Muralee (Wiley-VCH Verlag, 2021)We report the formation of a tetranuclear lanthanide cluster, [Yb 4 (bpzch) 2 (fod) 10 ] ( 1 ), which occurs from a serendipitous ring opening of the functionalized tetrazine bridging ligand, bpztz (3,6‐dipyrazin‐2‐yl‐1, ... -
Strong magnetic exchange coupling in Ln2 metallocenes attained by the trans-coordination of a tetrazinyl radical ligand
Mavragani, Niki; Kitos, Alexandros A.; Hrubý, Jakub; Hill, Stephen; Mansikkamäki, Akseli; Moilanen, Jani O.; Murugesu, Muralee (Royal Society of Chemistry (RSC), 2023)A combination of high-performing lanthanide metallocenes and tetrazine-based radical ligands leads to a new series of radical-bridged dinuclear lanthanide metallocenes; [(Cp*2LnIII)2(bpytz˙−)][BPh4] (where Ln = Gd (1), Tb ... -
Triplet-State Position and Crystal-Field Tuning in Opto‐Magnetic Lanthanide Complexes : Two Sides of the Same Coin
Gálico, Diogo A.; Marin, Riccardo; Brunet, Gabriel; Errulat, Dylan; Hemmer, Eva; Sigoli, Fernando A.; Moilanen, Jani; Murugesu, Muralee (Wiley-VCH Verlag, 2019)Lanthanide complex‐based luminescence thermometry and single‐molecule magnetism are two effervescent research fields, owing to the great promise they hold from an application standpoint. The high thermal sensitivity ... -
Rare-Earth Cyclobutadienyl Sandwich Complexes : Synthesis, Structure and Dynamic Magnetic Properties
Day, Benjamin; Guo, Fu-Sheng; Giblin, Sean; Sekiguchi, Akira; Mansikkamäki, Akseli; Layfield, Richard (Wiley, 2018)The potassium cyclobutadienyl [K2{η4‐C4(SiMe3)4}] (1) reacts with MCl3(THF)3.5 (M=Y, Dy) to give the first rare‐earth cyclobutadienyl complexes, that is, the complex anions [M{η4‐C4(SiMe3)4}{η4‐C4(SiMe3)3‐κ‐(CH2SiMe2}]2−, ...