Näytä suppeat kuvailutiedot

dc.contributor.authorKumar, Sanjay
dc.contributor.authorViinikainen, Ari
dc.contributor.authorHämäläinen, Timo
dc.date.accessioned2018-11-23T09:32:35Z
dc.date.available2018-11-23T09:32:35Z
dc.date.issued2018
dc.identifier.citationKumar, S., Viinikainen, A., & Hämäläinen, T. (2018). A Network-Based Framework for Mobile Threat Detection. In <i>ICDIS 2018 : 1st International Conference on Data Intelligence and Security</i> (pp. 227-233). IEEE. <a href="https://doi.org/10.1109/ICDIS.2018.00044" target="_blank">https://doi.org/10.1109/ICDIS.2018.00044</a>
dc.identifier.otherCONVID_28024181
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/60310
dc.description.abstractMobile malware attacks increased three folds in the past few years and continued to expand with the growing number of mobile users. Adversary uses a variety of evasion techniques to avoid detection by traditional systems, which increase the diversity of malicious applications. Thus, there is a need for an intelligent system that copes with this issue. This paper proposes a machine learning (ML) based framework to counter rapid evolution of mobile threats. This model is based on flow-based features, that will work on the network side. This model is designed with adversarial input in mind. The model uses 40 timebased network flow features, extracted from the real-time traffic of malicious and benign applications. The proposed model not only to detects the known and unknown mobile threats but also deals with the changing behavior of the attackers by triggering the retraining phase. The proposed framework can be used by the mobile operators to protect their subscribers. We used several supervised ML algorithms to build the model and got an average accuracy of up to 99.8%.fi
dc.format.extent297
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofICDIS 2018 : 1st International Conference on Data Intelligence and Security
dc.rightsIn Copyright
dc.subject.otherintrusion detection
dc.subject.othermobile threats
dc.subject.otherconcept-drift
dc.subject.otheranomaly detection
dc.titleA Network-Based Framework for Mobile Threat Detection
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-201811154727
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.date.updated2018-11-15T10:15:07Z
dc.relation.isbn978-1-5386-5762-1
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange227-233
dc.type.versionacceptedVersion
dc.rights.copyright© IEEE, 2018.
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceInternational Conference on Data Intelligence and Security
dc.subject.ysotietoturva
dc.subject.ysohaittaohjelmat
dc.subject.ysomobiililaitteet
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p5479
jyx.subject.urihttp://www.yso.fi/onto/yso/p2837
jyx.subject.urihttp://www.yso.fi/onto/yso/p4834
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/ICDIS.2018.00044
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright