Näytä suppeat kuvailutiedot

dc.contributor.authorMoilanen, Hannu
dc.contributor.authorÄyrämö, Sami
dc.contributor.authorJauhiainen, Susanne
dc.contributor.authorKankaanranta, Marja
dc.date.accessioned2018-11-22T06:44:57Z
dc.date.available2018-11-22T06:44:57Z
dc.date.issued2018
dc.identifier.citationMoilanen, H., Äyrämö, S., Jauhiainen, S., & Kankaanranta, M. (2018). Collecting and Using Students’ Digital Well-Being Data in Multidisciplinary Teaching. <i>Education Research International</i>, <i>2018</i>, Article 3012079. <a href="https://doi.org/10.1155/2018/3012079" target="_blank">https://doi.org/10.1155/2018/3012079</a>
dc.identifier.otherCONVID_28714678
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/60277
dc.description.abstract*is article examines how students (N � 198; aged 13 to 17) experienced the new methods for sensor-based learning in multidisciplinary teaching in lower and upper secondary education that combine the use of new sensor technology and learning from self-produced well-being data. *e aim was to explore how students perceived new methods from the point of view of their learning and did the teaching methods provide new information that could promote their own well-being. We also aimed to find out how to collect digital well-being data from a large number of students and how the collected big data set can be utilized to predict school success from the students’ well-being data by using machine learning methods (lasso regression and multilayer perceptron). Results showed that sensor-based learning can promote students’ learning and well-being. All upper secondary school (n � 37) and 87% of lower secondary school pupils (n � 161) argued that when data are produced by their bodies, learning is more interesting, and they mostly found that well-being analysis was useful (upper secondary 97%; lower secondary 78%) and can improve personal well-being (upper secondary 78%; lower secondary 67%). *e predictive powers with lasso regression and multilayer perceptron (MLP) were quite weak (correlation: −0.14 and 0.34, respectively).fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherHindawi Publishing Corporation
dc.relation.ispartofseriesEducation Research International
dc.rightsCC BY 4.0
dc.subject.otherdigital well-being data
dc.subject.othermultidisciplinary teaching
dc.titleCollecting and Using Students’ Digital Well-Being Data in Multidisciplinary Teaching
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201811144702
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosNormaalikoulufi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.laitosTeacher Training Schoolen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-11-14T10:15:17Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2090-4002
dc.relation.numberinseries0
dc.relation.volume2018
dc.type.versionpublishedVersion
dc.rights.copyright© 2018 Hannu Moilanen et al.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoopiskelijat
dc.subject.ysooppiminen
dc.subject.ysodata
dc.subject.ysohyvinvointi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p16486
jyx.subject.urihttp://www.yso.fi/onto/yso/p2945
jyx.subject.urihttp://www.yso.fi/onto/yso/p27250
jyx.subject.urihttp://www.yso.fi/onto/yso/p1947
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1155/2018/3012079
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0