Näytä suppeat kuvailutiedot

dc.contributor.advisorKilpeläinen, Tero
dc.contributor.authorLehtola, Piia
dc.date.accessioned2018-10-31T06:21:02Z
dc.date.available2018-10-31T06:21:02Z
dc.date.issued2018
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/60048
dc.description.abstractTässä tutkielmassa käsitellään derivaattaa ja siihen liittyviä ilmiöitä. Aluksi käydään läpi derivaatan ja jatkuvuuden yhteyttä, mitä on tutkittu matematiikassa paljon. Jo 1800-luvulla osoitettiin, että on olemassa jatkuva funktio, joka ei ole missään pisteessä derivoituva. Kuitenkin funktion derivoituvuudesta seuraa funktion jatkuvuus. Tätä ei pidä sekoittaa funktion derivaattafunktion jatkuvuuteen, sillä derivaattafunktiot eivät välttämättä ole jatkuvia. Niillä on kuitenkin vastaava ominaisuus kuin jatkuvilla funktioilla, eli välissäolevien arvojen olemassolo. Tästä seuraa, että derivaattafunktiolla voi olla vain oleellisia epäjatkuvuuspisteitä, eli pisteitä, joissa derivaattafunktion raja-arvoa ei ole olemassa tai se on ääretön. Funktiot eivät ole aina derivoituvia. Tästä syystä on kehitetty yleistyksiä perinteisestä derivaatasta. Tässä tutkielmassa esitellään niistä Dinin derivaatat ja funktion johdos. Näiden avulla pystytään osoittamaan mahdollisesti derivoitumattomilla funktioilla vastaavanlaisia lauseita kuin perinteisellä derivaatalla. Tietyt ominaisuudet funktioilla takaavat kuitenkin derivoituvuuden melkein kaikkialla niiden määrittelyjoukossa. Tällaisia ominaisuuksia ovat monotonisuus, rajoitetusti heilahtelevuus ja absoluuttinen jatkuvuus. Funktion johdoksien avulla voidaan osoittaa, että monotoniset funktiot ovat melkein kaikkialla derivoituvia. Tästä ominaisuudesta seuraa, että myös rajoitetusti heilahtelevat funktiot ja absoluuttisesti jatkuvat funktiot ovat melkein kaikkialla derioituvia. Tutkielman lopussa käsitellään derivaatan integroimista ja osoitetaan, että jos funktio halutaan saada takaisin sen derivaattafunktiota integroimalla, on funktion oltava tällöin absoluuttisesti jatkuva. Vastaesimerkkinä toimii kuuluisa Cantorin funktio.fi
dc.format.extent51
dc.format.mimetypeapplication/pdf
dc.language.isofi
dc.rightsIn Copyrighten
dc.subject.otherderivaatta
dc.subject.otherderivoituvuus
dc.titleDerivaatasta ja derivoituvuudesta
dc.typemaster thesis
dc.identifier.urnURN:NBN:fi:jyu-201810314561
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.oppiaineMatematiikan opettajankoulutusfi
dc.contributor.oppiaineTeacher education programme in Mathematicsen
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4041
dc.subject.ysoderivoiminen
dc.subject.ysofunktiot
dc.subject.ysodifferentiaalilaskenta
dc.format.contentfulltext
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/
dc.type.okmG2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright